
 

 

Abstract�Ten right-handed male subjects turned a crank 
(radius 10.29 cm) in two directions at three constant instructed 
speeds (fast, medium, very slow) with visual speed feedback. They 
completed 23 trials at each speed. With the hand constrained to 
move in a circle, non-zero forces against the constraint were 
measured. Assuming a plausible mathematical model of 
interactive dynamics, the peripheral neuromechanics could be 
������	
���
, revealing an underlying motion that reflected 
neural control. We called this data-driven construct the zero-
force trajectory. The observed zero-force trajectory was 
approximately elliptical. Its major axis, estimated by the 
principal eigenvector of the covariance matrix, differed 
significantly for the two movement directions. As peripheral 
neuromuscular compliance (i.e. low mechanical impedance) 
mitigates the consequences of imperfect execution, the required 
precision of motion commands is reduced. An oscillatory zero-
force trajectory that leads hand motion suffices to produce 
circular hand motions. Due to non-isotropic peripheral dynamics, 
that lead differs between degrees of freedom, resulting in an 
elliptical zero-force trajectory�� ���� ��������
 orientations differ 
with direction of rotation, as observed in the experimental data. 
As elliptical motion is generated by two non-colinear sinusoids 
with non-zero phase difference, these results support the 
hypothesis that humans simplify this constrained-motion task by 
exploiting primitive dynamic actions, oscillations and impedance. 

I. INTRODUCTION 

Using tools is a hallmark of human behavior, comparable 
to language and laughter. While some animals are capable of 
making and using tools, this ability is vastly more developed 
in humans [1]�[4]. Nonetheless, neuroscience research has 
primarily focused on the examination of elementary behaviors 
under strict experimental control (unconstrained motion). 
While these paradigms render manageable data for analysis 
and modeling, it is difficult to generalize the insights to 
understand the actions that make humans special�tool use. 
Physical interaction with a kinematic constraint provides an 
intermediate stage between unconstrained motion and physical 
interaction with complex dynamic objects. Moreover, 
kinematic constraints are ubiquitous in everyday object 
manipulation. Activities such as turning a steering wheel, or 
opening a door, are aspects of everyday life which humans 
perform effortlessly. This paper presents a study of unimpaired 
subjects physically interacting with a circular constraint�
turning a crank. 

While human dexterity vastly exceeds that of most modern 
robots, the human neuro-mechanical system is remarkably 
slower than its robotic counterparts [5]. We have proposed 
that, to achieve highly dynamic performance despite these 
limitations, human behavior is composed of dynamic 
primitives [6]�[12]. We conceive these to be dynamic 
attractors that emerge from nonlinear interactions between 
neural and mechanical parts of the system and require minimal 
intervention from higher levels of the central nervous system.  
In this work, we discuss two types of dynamic primitives: 
oscillations and mechanical impedance. 

In a task that involves significant physical interaction, the 
mechanical impedance (interactive dynamics) of the limb 
relates the descending neural commands, the motion of the 
hand, and the force on the hand. Thus, looking at any one of 
these quantities without considering the influence of the others 
would only partially explain the action.    

In a previous work, we presented a novel  method [13]. The 
approach assumed a plausible mathematical model of 
interactive dynamics and used �������	
���
������������������
����
peripheral biomechanics to uncover a summary of the 
underlying neural influences.  We defined this quantity as the 
zero-force trajectory, one consequence of the underlying 
neural commands. The previous work also showed that 
patterns believed to be the result of neural control re-emerge 
in the zero-force trajectory.  

Slow neural transmission and muscle response implies that 
humans rely heavily on feed-forward (i.e. predictive) control; 
prior work shows that humans adjust their behavior to 
prioritize predictability [14]�[18]. In theory, strictly periodic 
actions are infinitely predictable. Negotiating a circular 
constraint at constant tangential speed (equivalently: constant 
angular speed) requires periodic hand motion in each degree 
of freedom. For these reasons, we anticipate that crank-turning 
might preferentially be executed as an oscillatory action. Here 
we studied circularly constrained hand motion at constant 
tangential speed. 

This work re-examined the zero-force trajectory estimates 
reported previously [13]. However, a different hypothesis was 
tested. This work theorized that humans use dynamic 
primitives, oscillations and impedance, to accomplish this 
constrained-motion task. This led to a testable prediction: The 
zero-force trajectory will exhibit differences between 
directions of motion. Constant-speed circular hand motion 
requires sinusoidal motion in orthogonal directions with a 
phase offset of ±90° (the sign depends on the direction CW 
vs. CCW). However, the motion of the hand would lag the 
neurally-defined zero-force trajectory to an extent determined 
by the slow response of the bio-mechanical periphery. This 
lag is likely to differ in orthogonal directions, resulting in 
different performance between the CW and CCW directions. 
The zero-force trajectory is one consequence of the underlying 
neural commands. Thus, if the zero-force trajectory is 
composed of oscillations, it should exhibit differences as a 
function of turning direction. 

Results showed that the zero-force trajectory was 

approximately elliptical at the medium and fast speeds, while 

nearly circular at the very slow speed. The principal 

eigenvector of its best-fit covariance matrix served as a 

measure of major axis orientation of the ellipse. As predicted, 

turning direction had a significant effect on the ellipse 

orientation. This observation is consistent with the hypothesis 

that (at the medium and fast speed) this constrained motion 
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task was performed by a combination of two dynamic 

primitives -- oscillations and mechanical impedance. 

II. METHODS 

A. Participants 

Ten healthy male college-age students were recruited for 
the study. All participants were right-handed, and none 
reported any biomechanical injury to their arm nor any 
neurological problems. Prior to participating in the study, they 
were informed about the experimental procedure and signed 
���� ��������� ���	���� ���
����� 
�������� ��� ����	�
Institutional Review Board. 

B. Experimental Apparatus and Procedure 

The crank used in this experiment is shown in Figure 1. 
The crank arm was mounted on a high precision incremental 
optical encoder/interpolator set (Gurley Precision Instruments 
encoder #8335-11250-CBQA, interpolator #HR2-80 QA-
BRD) with a resolution of 0.0004 degrees per count. A six-
axis force transducer (ATI Model 15/50) was attached to the 
end of the crank, with a handle mounted on it. A spool 
managed the force transducer cable.  

�
����� ���� �!��������"� ���� 	
�$����	� 
��� %
	 occluded 
from view by a wooden panel, which did not affect the range 
of motion. The arm and forearm were suspended in the plane 
of the crank by a canvas sling. The subject sat in a chair with 
a rigid back. The wrist was braced and the shoulder was 
constrained by a harness attached to the back of the chair. The 
subject was positioned such that the crank, with radius 10.29 
cm, was well within the workspace of the arm.  

Data acquisition was controlled by a computer running the 
QNX real-time operating system on an Intel Pentium 100 
processor. The encoder, sampling at 200 Hz, was connected to 
a set of counters and to the computer via digital I/O. The ATI 
������ ��
�	�
����	�	���
�, sampled at 100 Hz, was processed 
by its embedded controller and input to the computer through 
the digital I/O. The visual display, also generated by the 
computer, was on a 17-inch monitor (311 x 238 mm, resolution 
1280 x 1024, 76 Hz) which was mounted approximately 75 cm 
����� 	
�$���	�� ���	&� ���� �!��������� %
	� ������d into two 

��'

�� 	������	*� +� �����	���� ���
�	� 
�� 	
�$���	�� ���������� ���
��������
����� 	����� 
��� <� �����	� ��� ���
�	� 
�� 
� ��	

���-
instructed speed.  

At the start of the experiment, subjects performed 20 trials 
at their preferred speed, 10 trials in the CW direction and 10 in 
the CCW direction; both conditions were blocked, in random 
sequence for each subject; each trial lasted 8 seconds. Subjects 
were not provided any visual feedback during these trials. 
Thereafter, subjects performed 6 blocks of 30 trials, each with 
visual specification of 1 of 3 target speeds (slow: 0.075, 
medium: 0.5, and fast: 2.0 revolutions per second), in either 
CW or CCW directions. The order of the speed and direction 
blocks was pseudo-randomized across subjects. The three 
speeds were selected to cover a significant range: 0.075 rev/s 
was extremely slow (required over 13 s per revolution), 0.5 
���=	�%
	����	�����	
�$���	������������	����"�
���+&>����=	�%
	�
close to the fastest speed that subjects could turn the crank. 
Visual feedback on the monitor displayed the target speed, as 
%����
	�	
�$���	����
�-time hand speed; the horizontal axis was 

����"� 
��� ���� ������
�� 
!�	� %
	� 	����&� ?
�$���	�� 	����� %
	�
estimated using an online backward finite difference 
algorithm. Target speed was displayed as a continuous 
horizontal line in the middle of the screen. The relation 
between crank speed and screen display was re-scaled for 
every block; the width of the screen corresponded to the time 
of the trial, which was a function of the desired crank speed. 

In the slow-speed conditions, each trial lasted 45 s; in the 
medium-speed conditions, each trial lasted 16 s; in the fast-
speed conditions, each trial lasted 4 s. This yielded 8 turns of 
the crank for the fast and medium conditions, but only about 
3.4 turns of the crank for the slow condition. The duration of 
the slow-speed trials was limited to avoid subject fatigue. 

 

Figure 1: Experimental setup. The crank displayed in the inset was 
used to provide a circular constraint. Vision of the arm and crank was 
occluded but the subject was provided with visual speed feedback. 
The wrist was braced, the elbow was supported by a sling, and the 
shoulders were strapped to a chair. 

C. Model 

The arm was modeled as a two-link planar manipulator, 
with no gravitational effects. Inertia parameters were 
estimated based on the results of the cadaver studies of 
Dempster [19], [20]. The shoulder joint location was modeled 
as a fixed point, as the thorax and scapula were assumed to be 
stationary. The two-link manipulator dynamics coupled to the 
crank is detailed in the Appendix. This approach is the same 
as used by Ohta et al. [21].  

Though muscle force production is a complex function of 
many factors, its dominant behavior can be well described by 
a function of muscle length and its rate of change [22], [23]. 
One way to describe the dynamics of interaction uses a 
mechanical impedance operator ���� [24]. The force ���	 
time-function can be computed from the displacement time-
function 
���	, ���	 � ��
���	�. Displacement is defined as 

���	 � �
��	 � ����	�where ���	 is the actual hand position 
and �
��	 is a zero-force trajectory.  Accordingly, a simplified 
model of muscle mechanical impedance was used�a linear 
spring and viscous damping element with common motion 
[25]. To implement this model on a two-joint arm, joint 

stiffness was assumed to be a 2�2 symmetric matrix, 

independent of configuration. Joint damping, also a 2�2 
symmetric matrix, was proportional to joint stiffness. This is 
similar to the muscle model previously used by Flash [26] but 

p j
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in this case we used a damping term which was defined relative 
to the zero-force trajectory. 

The joint torque was defined by,  

 � � ���
 � �	 � ���� 
 � �� 	 (1) 

The stiffness in units of N-m/rad was defined as 

 � � �� ���� ������ ���� � � ���� !"�#
!"�# #��#$ (2) 

The viscous damping in units of N-m-s/rad was defined as 

 � � � �%�� %��%�� %���� (3) 

The ��� and %�� terms are the net shoulder joint stiffness 
and damping, the ���, %��, ���, and %�� are the two-joint 
parameters, and the ��� and %�� terms describe the elbow 
parameters. The term � is a dimensionless scalar. The values 
for joint stiffness and damping were consistent with those of 
Flash [26], such that � � &�. The & term has units of time, 
consistent with a first-order model of muscle impedance. A 
gain of � � '�  was used in the slow and medium cases, and 
a gain of � � !�  was used in the fast case. Damping was 
derived from stiffness by multiplication by a constant factor, 
&, which was 0.05 s for the slow and medium cases, and 0.1 s 
for the fast cases.  

Substituting Equation 1, into Equation 9, 10, and 11 (see 
Appendix), the equation can be manipulated to solve for �� 
. 

�� 
 � �(�)*+(�)�+*(�+, � -�.(�//,�0 � +���  
�����������-1�21�3 � 45.(�/67 � 8 � ���
 � �	7 � ��  (4) 

Numerically integrating this first-order differential 
equation, (Equation 4) computes the zero-force trajectory 
corresponding to a prescribed position, velocity, acceleration, 
and force. 

The velocity and force signals were filtered with a second-
order Butterworth filter using a cutoff frequency of 10 Hz, 
except in the slow tangential force condition. The tangential 
force at the slow speed was small in magnitude because there 
was a large number of samples with a magnitude close to the 
resolution of the sensor. This resulted in artifactual step 
changes in the force measurements. To eliminate this artifact, 
the tangential force in the slow condition was filtered with a 
cutoff frequency of 0.5 Hz, far faster than the turning 
frequency of the slow task (0.075 rev/sec). 

D. Covariance Ellipse Orientation 

To test whether the zero-force trajectory consistently 
changed orientation as a function of speed and direction, the 
zero-force trajectory covariance was computed, 

9:;��
< =
	 � � !>?��
<@ � AB<
	�=
<@ � AC<
	
D

@E�
 (5) 

where �
 and =
 are the Cartesian zero-force trajectory points, 
ABF  and ACF are the mean Cartesian zero-force trajectory 

points, and > is the number of samples. The eigenvectors of 
this covariance matrix were computed to determine the major 
and minor axes of the covariance ellipse. The ellipse 
������
����� %
	� ��
	
���� ���
����� ��� ���� <� ����������	�����"�

and the sign of the measurement depended on turning direction 
(illustrated in the inset of Figure 3). The first trial for each 
condition was excluded. In all subsequent trials, the first 1.5 s 
were discarded to remove any transient effects induced by the 
initial condition specified for numerical integration. Only 
complete revolutions were included. The dependent measure 
submitted to statistical analysis was the angle of the covariance 
ellipse of the zero-force trajectory. When the ratio between the 
major and minor axis of the ellipse approaches unity, the 
orientation of the major axis angle is ill-defined. This was the 
case for many of the slow speed trials. As a result, the 
statistical analysis was only performed on the medium and fast 
speed trials. To statistically evaluate the influence of speed and 
direction, a linear mixed model was employed; it was then 
tested using analysis of variance (ANOVA). The linear model 
which represents the observed dependent measure G@<H<I was 

expressed as 

G@<H<I � A, � JH � &I � KL � �J&	H<I � �JK	H<L 
����������������&K	I<L � �J&K	H<I<L � M@<�H<I<L	 

(6) 

where the grand mean is A,, the fixed effect of speed is JH, 
where N is an index from 1 to 2. The fixed effect of direction is 
&I, where k is an index from 1 to 2. The random effect of 
subject is KL, where O is an index from 1 to 10. The stochastic 
sampling effect is M@<H<I, where P is an index from 1 to 22, 

representing the multiple trials.  

III. RESULTS 

In this experiment subjects turned the planar crank at 
different speeds either in the CW or in the CCW direction. 
Our working hypothesis was that this task was executed via 
dynamic primitives. Extracting the zero-force trajectory as 
one consequence of the underlying neural commands, we 
could test the following prediction: the zero-force trajectory 
would be oscillatory, and exhibit differences between 
directions due to the phase lag introduced by peripheral 
neuro-mechanical dynamics. 

A. Covariance Ellipse Orientation 

Figure 2 displays a representative zero-force trajectory 
from one subject in each direction and speed condition. The 
shapes are approximately elliptical and show consistent speed 
fluctuations along the ellipse. Previous work also reported that 
speed minima coincide with curvature maxima [13]. In 
addition, this analysis shows that the elliptic shapes clearly 
displayed a difference in orientation between the two 
directions. To quantitatively test whether the orientation 
differed with respect to speed or direction, the major axis angle 
of the covariance ellipse was computed (Figure 3). The mean 
major axis angle in the CW conditions were 129.33�Q 16.16o 
(medium) and 116.37�Q 2.67o (fast). The mean major axis 
angle in the CCW conditions were 168.11 Q 17.86o (medium) 
and 158.31 Q 4.31o (fast). A significant main effect of speed 
(���
<R�
 = 13.135, p = 0.001) and direction (���
<R�
 = 64.668, p 

<< 0.001) was detected.  
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Figure 2: One representative trial from one subject in each of the slow, 
medium, and fast speed conditions. Top: slow speed; middle: medium 
speed; bottom: fast speed. Left: clockwise direction trials; Right: 
counter-clockwise direction trials. The path defined by the constraint 
is shown by the black dashed circle. The zero-force trajectories are 
shown by lines with varying color that indicates speed along the zero-
force path (normalized by its range). Importantly, the zero-force 
trajectory is roughly elliptical and that orientation differs with 
direction. 

 

Figure 3: To quantify the orientation of the elliptical zero-force 
trajectory the covariance ellipse was computed. The plot displays the 
mean angle of the major axis of the covariance ellipse as a function 
of turning speed and direction. Error bars indicate the standard 
deviation between subjects. 

IV. DISCUSSION 

This study examined kinematically constrained motion as 
an intermediate step to bridge the gap between (widely-
studied) unconstrained motions and (sparsely-studied) 
physical interaction with objects with complex dynamics. We 
investigated the detailed patterns of motion and force that 

human subjects exhibited when performing a simple 
constrained-motion task, turning a circular crank. Performing 
this task using oscillatory dynamic primitives would require 
two sinusoids with non-zero phase difference, specifically 
±90° out of phase for moving in a circle. Rather than attempt 
to execute a perfect circle, low mechanical impedance, another 
dynamic primitive, would obviate the need for precise motion 
control. However, the resulting peripheral neuro-mechanical 
dynamics would contribute a different phase lag in orthogonal 
directions. We therefore expected differences when subjects 
turned in opposite directions, and that was observed. 

We assumed a simplified model of neuro-muscular 
����
���
�� �����
���� 
���
	��� ��� ��� ������ �
������������
��
neuro-����
���	"� 
��� �����
��� a consequence of underlying 
neural commands, expressed in terms of motion�the zero-
force trajectory. The zero-force trajectory is mathematically 
	����
�� ��� ���� �����

�� ��
$�������� ��� ���� �'
������
�� ����� 
hypothesis [27]�[29]. However, unlike the virtual trajectory, 
we are agnostic about whether the CNS encodes this quantity; 
many alternatives might yield similar results. Instead, the zero-
force trajectory is a construct based on the measured force and 
motion, in combination with a reasonable, albeit simplified, 
model of peripheral neuro-mechanics. 

The zero-force trajectory was roughly elliptical. We 
determined the orientation of its major axis via the principal 
eigenvector of the covariance matrix. Remarkably, we found 
that direction (CW vs. CCW) had a substantial and significant 
effect. This direction dependence was consistent with a 
neurally-defined motion command (the zero-force trajectory) 
composed of two sinusoids with a non-zero phase difference.   

A model that accounts for the anisotropy of skeletal inertia 
and neuro-muscular impedance was sufficient to explain these 
results. Consider the simple system where the zero-force 
trajectory in two orthogonal directions, �
 and =
, is 
constructed from two out of phase sinusoids with the same 
frequency, S, same magnitude, and a phase difference, T.  

U �
 � VWX��S�	
=
 � VWX��S� � T	 (7) 

Given such a system, a perfect circle can be drawn in the 
CW or CCW direction with a phase difference of ±90°. 
However, we know that peripheral neuro-mechanical 
dynamics contribute a different phase lag in different 
directions. The apparent mass of a two-link manipulator in the 
work-space is not uniform; the eigenvalues of the mass matrix 
are not equal. This direction-dependent variation of apparent 
mass is one cause of the different phase lags in different 
directions of motion. The additional phase lag contributed by 
peripheral neuro-mechanical dynamics results in zero-force 
trajectories with an elliptical shape that is oriented differently 
for CW and CCW motion. In fact, this directional effect is 
consistent with the change in orientation of the zero-force 
trajectory that we observed in our experiments. 

V. CONCLUSION 

Despite its apparent simplicity, this constrained-motion 
task evoked a rich set of behaviors. We observed directional 
differences in the zero-force trajectory orientation, consistent 
with task execution generated by dynamic primitives. Our 
observations indicate that subjects took advantage of 
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interactive dynamics (hand mechanical impedance) to manage 
the control of contact and avoid the need for precise force 
control. The underlying motion that generated force via 
mechanical impedance was competently described by two 
oscillatory dynamic primitives, phase-shifted sinusoids. These 
results provide further evidence that humans manage complex 
physical interaction tasks by taking advantage of dynamic 
primitives, in this case oscillations and impedance. 

VI. APPENDIX 

The model of the arm and crank system was constructed in 

the same manner as performed by Ohta et al. [21]. Figure 4 

displays the variables and notation used in the development of 

the model. Inertia parameters were estimated based on the 

results of the cadaver studies of Dempster [19], [20].  

The system has one degree of freedom; therefore, there is 

always a kinematic relation that can be used to transform from 

Cartesian position, Y � )�< =7,, to joint position, � �
)Z�< Z�7,, and to crank position, 1, where the center of the 

crank is defined as Y[ � )�5< =57. 
 Y � � � \�]� �� � \�]��

�\�^� �� � \�^���� ��� ��_� `aV 1_ VWX 1 $ � Y5 (8) 

The notation b�, c� denote VWX�Z�	, `aV�Z�	 and b��, c�� 

denote VWX�Z� � Z�	, `aV�Z� � Z�	. The radius of the crank is 

-, the damping of the crank is 45, and the inertia is .. The upper 

arm, denoted by 1, and the forearm plus hand, denoted by 2, 

are described by length O�, O�, mass d�, d�, inertia about the 

z axis .�, .�, and center of mass distance from the joint axis 9�, 

9�. Limb parameters are reported in previous work [13]. The 

inertia of the crank about the pivot was 3.716 e !'(f kg/m. 

The force on the handle is 0 � g�B< �Ch,, with the normal unit 

vector, 3 and tangential unit vector, /. The joint torque is 

denoted �� � � )i�< i�7,. 

From the sum of moments acting on the crank,  

 .1j � 451� � -/,0 (9) 

summation of moments about the shoulder, 

 *�j � 8 � � � +,0 (10) 

and the kinematic relation that equates the acceleration at the 

handle to the acceleration at the hand, 

 Yj � �+�j � � +��� � -�1j/ ��1� �3	� (11) 

and the joint torque defined by in Equation 1, a model of the 

system can be constructed. Substituting Equation 1, into 

Equation 9, 10, and 11, the equations can be manipulated to 

solve for �� 
 (see Equation 4). Parameters comprising these 

equations include the mass matrix, the centrifugal and Coriolis 

forces, and the Jacobian relating unconstrained differential 

arm motions to hand motions. 

Figure 4: Model of crank rotation task which displays the sign 

convention and notation used in the computations. 
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