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Abstract

Physical interaction is a key aspect of activities of daily living. These tasks require
simultaneous regulation of both force and motion. For example, even a task as simple
as opening a door presents a challenge to the development of prosthetics, exoskeletons,
and human-robot interaction. Motor neuroscience has reported systematic patterns of
motion during free reaching and force during static posture. However, similar results
do not extend to physical interaction. A descriptive model is required.

The paradox of human performance: Despite large feedback delays, and many
degrees of freedom, humans are incredibly dexterous and excel at physical interaction
with complex objects. To accomplish such performance, we hypothesize that motor
behavior, with and without physical interaction, is constructed using a limited set of
primitive dynamic behaviors, including oscillations, submovements, and mechanical
impedance. We not only propose that these ‘building blocks’ exist but that their
connectivity is important – a Norton equivalent network.

This thesis is composed of four components that systematically investigated this
hypothesis. (1) Through the study of crank turning we presented evidence for dynamic
primitives. (2) To test the hypothesis, a method to estimate impedance during crank
turning was developed. (3) When kinematic redundancy was substantial, a dynamic
primitive-based control resolved redundancy without compromising performance. (4)
This hypothesis led to the development of an experiment which falsified a common
assumption, that humans can directly regulate force during motion.

While it is fundamentally hard to prove hypotheses in human motor control, the
hypothesis of dynamic primitives can descriptively account for systematic patterns in
constrained motion. Furthermore, the value of this hypothesis was demonstrated in
robotics by simplifying the management of kinematic redundancy and force regula-
tion.

Thesis Supervisor: Neville Hogan
Title: Sun Jae Professor of Mechanical Engineering
and Professor of Brain and Cognitive Sciences
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Chapter 1

Introduction

“The harmony of natural law reveals an intelligence of such superiority

that, compared with it, all the systematic thinking and acting of human

beings is an utterly insignificant reflection.”

–Albert Einstein

While human physical interaction may not fall into the category of explicitly

formulated physical laws to which Einstein was referring, there is something inherently

beautiful about the human ability to physically interact with the world.

1.0.1 Personal Aside

Unique life experiences personally motivate my research. Spending time in a special-

education room while growing up, I observed different types of adaptive devices.

These devices, designed by engineers and scientists my friends and I had never met,

liberated us. Since early middle school, I have been working to become one of those

engineers. I have strived to obtain a unique perspective in the field of dynamic systems

and control. I hope that my research at MIT, this thesis, is part of the platform from

which to step forward in this dream. In my next steps, I hope to continue learning

but also to solidify the application of the ideas presented herein.
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1.0.2 Motivation

An increasing amount of attention has been directed to the development, both in

academia and industry, of hardware designed to interact with humans (e.g. prosthet-

ics, exoskeletons, rehabilitation robotics). This field has the potential to change the

daily lives of millions of people. Each year in the United States 185 thousand people

experience amputations, resulting in an annual cost of $8-12 billion [Ziegler-Graham

et al., 2008]. Furthermore, with an aging population robotic stroke rehabilitation

has great potential. Each year in the United States 795 thousand people experience

a stroke, resulting in an annual cost of $53 billion [Tsao et al., 2022]. The use of

exoskeletons for rehabilitation and augmentation has yet to see widespread consumer

use. However, this area is expected to grow rapidly in the coming years. Lastly, the

more general field of robotics is growing rapidly. Currently, more than 400 thousand

robots are used in industry, with an annual cost of $27 billion [Grau et al., 2021].

Science fiction worlds where robots seamlessly integrate with humans have cap-

tured many people’s imagination (e.g. Marvel’s Iron Man). It may appear that the

primary obstacle preventing these possibilities is the development of lighter, stronger,

more back-drivable systems, and better power sources. However, even if this futur-

istic hardware existed, control algorithms which work with the human motor system

are still in their infancy. This is in part a reflection of the limited understanding of

human motor control – especially during contact. The work presented herein is a step

forward in this direction.

Humans excel at physical interaction with objects, even when those objects in-

troduce complex dynamics and kinematic constraints. Furthermore, human dexterity

exceeds that of most modern robots, despite the fact that the human neuro-mechanical

system is considerably slower than its robotic counterparts [Kandel et al., 2013,Loram

et al., 2005,Shepard and Metzler, 1971]. In contrast, motor neuroscience has primarily

focused on the examination of elementary behavior under strict experimental control.

This is in part due to the approach used in many studies: search for consistent pat-

terns observed across a variety of conditions. Some studies investigated conditions

22



with free reaching (substantial motion, negligible force). In free reaching, systematic

patterns have been widely reported; examples include Fitts’ law [Fitts, 1954] and the

speed-curvature relation [Lacquaniti et al., 1993]. Conversely, other studies have in-

vestigated force exertion during static posture (substantial force, negligible motion).

In this case, an analog of the speed-curvature relation has been reported [Massey

et al., 1992]. However, in everyday life physical interaction frequently involves both

substantial motion and substantial force. In physical interaction, when both motion

and force vary, robust patterns have not been reported. This indicates that human

physical interaction is not well understood.

When a behavior involves substantial contact, force and motion are no longer

independent variables. Force exerted on an object depends not only on neural activity,

but also on the object’s motion. One way to describe the dynamics of interaction is

with the mechanical impedance operator 𝑍{·} [Hogan, 1985b].

Mathematically, impedance is the relation between displacement and the force

it evokes, a dynamic generalization of stiffness. The force time-function 𝐹 (𝑡) can be

computed from the displacement time-function 𝑥(𝑡), 𝐹 (𝑡) = 𝑍{Δ𝑥(𝑡)}. Displacement

is defined as Δ𝑥(𝑡) = 𝑥0(𝑡) − 𝑥(𝑡), where 𝑥(𝑡) is position, and 𝑥0(𝑡) is a ‘zero-force

trajectory’. In principle, knowledge of mechanical impedance, in combination with

simultaneous measurement of force and motion during object manipulation, would

allow us to ‘subtract off’ or ‘peel back’ peripheral biomechanics to uncover a summary

of one aspect of the underlying neural influences expressed in terms of motion,

𝑥0 = 𝑍−1{𝑓}+ 𝑥. (1.1)
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Figure 1-1: Block diagram depicts the relationship between the impedance 𝑍, force,
𝑓 , position, 𝑥, central nervous system (CNS) and the zero-force trajectory, 𝑥0. Figure
replicated from [Hogan, 2014].

In practice, mechanical impedance is nonlinear and time-varying. Measuring it

during action can be achieved but is challenging [Kearney and Hunter, 1990]. In

this thesis, we will explore these ideas through three approaches: (1) assuming the

impedance, (2) measuring the impedance, and (3) choosing the impedance in robotic

experiments.

A kinematic constraint provides an intermediate stage between unconstrained

(free) motion and interaction with complex dynamics. Moreover, curved constraints

are ubiquitous in activities of daily living (ADLs) (e.g. turning a steering wheel or

opening a door). In fact, interacting with doors was shown to be the most common

ADL [Petrich et al., 2022]. This thesis investigated humans and robots physically

interacting with a circular constraint (i.e. turning a crank).

1.1 The Paradox of Human Performance

Human neural pathways and muscles are orders of magnitude slower than computer

processors and robotic actuators, yet humans outperform robots in tasks requiring

physical interaction [Hogan, 2017, Kandel et al., 2013, Churchland and Sejnowski,

2017]. Neural action potentials propagate at speeds which rarely exceed 100 m/s,

orders of magnitude slower than electronic communication. Not only is the neural
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transmission slow, human muscles contract at frequencies less than 10 Hz, while their

robotic counterparts easily achieve movements well beyond 100 Hz.

Furthermore, the control of high-degree-of-freedom robots is frequently viewed as

a challenge, especially using popular optimization-based methods, which scale poorly

with system dimension. This is the infamous ‘curse of dimensionality’ [Bellman, 1966].

Meanwhile, biological systems regularly articulate appendages vastly more complex

than state-of-the-art robots. Furthermore, ‘excess’ anatomical degrees of freedom are

commonplace in biological systems; the human arm has between 9 and 10 degrees of

freedom, the human hand has more than 20 degrees of freedom, and the entire body

has more than 200 degrees of freedom.

In the face of these delays and kinematic complexity, even an activity as simple

as opening a door with one hand, holding a cup of coffee in the other hand, and

maintaining a stable upright posture would seem impossible. This is the paradox of

human performance.

The long delays indicate that humans rely heavily on a predictive or feedforward

control strategy, based on some internal representation or model of the system to be

controlled. However, it seems unlikely that humans develop a detailed ‘engineering

style’ dynamic model for each object they interact with. Without perfect prediction,

neuromuscular delays are a fundamental constraint which may yield an evolutionary

preference for stereotyped, smooth, and predictable behavior.

1.2 Literature Review

Investigations of human motor control have been ongoing for more than a century

[Woodworth, 1899]. The following will present a review of the extensive literature

which forms the core pillars that this thesis rests upon.

To learn fundamental concepts about human motor control, simple but competent

models have been proposed. These models have then been iteratively refined as new

observations have been made. When studying the human circuitry and controller, it

is rarely possible or ethical to ‘open the box’ – enabling direct measurement of signals
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from neurons1. In addition, models of human biomechanics are incomplete. Currently,

it is not feasible to measure or compute exact quantities such as muscle force2, inertial

properties, muscle moment arms, and neural activation signals. Thus, researchers rely

on the outputs of the motor system which can be observed or estimated, in order to

make inferences about the processes that generate them. However, the modeling is

notoriously difficult. Human muscles are highly nonlinear [Zahalak, 1990] and the

neural control system is complex and largely uncomprehended [Kandel et al., 2013].

Researchers search for ways to ‘peel back’ biomechanics to ‘reveal’ information about

the underlying controller. One way this can be done is by looking for outputs of

the motor system which are robust to the activities or action [Hogan, 2017]. In the

last 50 years, several key ‘robust’ observations have been reported; these ‘robust’

observations have established a basis for our knowledge of human motor control.

1.2.1 Coordinate System for Movement Planning

The human body has hundreds of degrees of freedom. If we focus on the reaching

movements of the hand, the upper limb has 9-10 degrees of freedom. However, only

6 degrees of freedom are required to specify the position and orientation of the hand

– thus, the system is redundant. Yet, humans seem to solve this problem effortlessly.

To gain insight into how humans solve the redundancy problem, researchers have

investigated movement trajectory formation.

The human limb is comprised of largely rotational joints actuated by muscles that

contract to produce joint torque. To move the hand, one could plan movements in

endpoint, joint, or muscle length coordinates (while many other choices exist). Several

studies have been cleverly designed to tease out clues to understand the coordinate

frame humans use to plan movements.

In a study by Morasso [Morasso, 1981] subjects’ hands were confined to move in a
1In experiments where neural measurements are possible, only a fraction of the total population

can be recorded.
2Recent work by Martin et al. applied force pulses to the Achilles tendon and measured the

speed of the induced wave [Martin et al., 2018]. A measure of wave speed and tendon cross sectional
area made it possible to estimate the force acting through the Achilles tendon during walking and
running. However, this method can not be applied to all tendons.
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plane. Subjects’ shoulders and elbows were fixed – only rotation about the elbow and

shoulder was allowed. Subjects were instructed to perform point-to-point reaching

movements. The hand trajectory, and the joint angular trajectories were computed.

The joint trajectories changed markedly for different movements. The hand end-

point paths were relatively straight, with smooth bell-shaped velocity profiles. The

observation of simple and consistent straight paths in hand end-point space indicated

that subjects formulated motor commands in terms of hand coordinates.

In a study by Lackner and Dizio [Lackner and Dizio, 1994] subjects were instructed

to perform forward reaching to a goal. During the task the subjects could not see their

hand. When unperturbed, subjects made straight reaching movements. However,

when the entire room was rotated, producing Coriolis forces on the limb, their hand

paths were distorted. After multiple repetitions, subjects again began making straight

hand paths. This indicates that humans plan movements in endpoint space.

In another study, subjects grasped a manipulandum which induced a curl field

at the hand [Shadmehr and Mussa-Ivaldi, 1994]. When the curl field was turned

off, subjects made straight reaching movements. However, when the curl field was

turned on, their hand paths were distorted. With practice, despite the presence

of the curl field, subjects began to produce straight hand movements in Cartesian

coordinates. The recovery of straight movements in the presence of a disturbing

force field is referred to as motor adaptation. Interestingly, when the curl field was

subsequently removed, subjects produced the mirror image of the effect observed when

the curl field was first experienced (before motor adaptation had occurred). This

supports the idea that humans plan movements in end-point coordinates. Notably,

the motor adaptation was observed in other sections of the work space that had not

been explored.3 This observation suggests that motor adaptation may result from

a learned internal model of the limb dynamics, not simply a relationship between

visited states and experienced forces.

In a fourth study, subjects received visual feedback about their hand position.

The subjects’ hands were occluded, and visual feedback of their hand position was
3However, the effects of motor adaptation were not generalized to all regions of the work space.
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provided on a digital display. In certain trials, a nonlinear transformation was applied

to the visual feedback, such that when the subjects made straight lines with their

hands, curved lines were observed in the visually perceived space – the digital display.

With practice, while the nonlinear transformation was applied, subjects made curved

trajectories in real hand space in order to produce straight trajectories in visually

perceived space – the digital display [Flanagan and Rao, 1995]. This demonstrated

that subjects not only plan movements in endpoint coordinates, they plan movements

in visually-perceived endpoint coordinates.

These unconstrained motion studies of multi-joint reaching clearly document the

importance of hand kinematics. When force fields or visual distortions are applied,

humans spontaneously adjust muscle force to restore straight hand paths in visually

perceived space.

1.2.2 Smoothness

In point-to-point unconstrained motions, approximately straight-line hand paths with

smooth bell-shaped velocity profiles are observed. A model that accurately explains

the qualitative and quantitative features of human reaching movements was proposed

by Hogan [Hogan, 1982,Hogan, 1984b] and later confirmed experimentally [Nelson,

1983,Flash and Hogan, 1985]. When performing unconstrained movements, the hand

trajectory was described extremely well by minimizing the squared jerk – the deriva-

tive of the acceleration (plots of example movements can be seen in Figure 1-2). To

calculate the mean squared jerk trajectory for a planar 2D movement, the cost func-

tion, 𝐶𝑜𝑠𝑡, must be minimized over a time interval from 0 to the final time, 𝑡𝑓 . This

can be written as

𝐶𝑜𝑠𝑡 =
1

2

∫︁ 𝑡𝑓

0

(︃(︂
𝑑3𝑥

𝑑𝑡3

)︂
+

(︂
𝑑3𝑦

𝑑𝑡3

)︂)︃
𝑑𝑡 (1.2)

where 𝑥(𝑡) and 𝑦(𝑡) are functions of time 𝑡 and Cartesian coordinates of hand space.

This observation was robust to movement amplitude, duration, initial/final position

translation, and rotation of the line joining the two points. This model required

that the movements were relaxed and well within the limits of the human motor
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system. Consistent with the previous observation that humans plan movements in

hand coordinates, this model only predicted the correct hand trajectory when the

minimum jerk cost function was formulated in endpoint coordinates, not in joint

coordinates. This model is competent to explain the observations, but does not imply

that the brain contains the machinery to perform optimization, nor does it imply the

brain uses optimization to plan movement trajectories.

Figure 1-2: The (a)position, (b)velocity, and (c)acceleration profiles for a 6-inch
minimum-jerk motion of 700 ms duration between two equilibrium positions. Hori-
zontal axes represent time in seconds; vertical axes represent (a) degrees, (b) degrees
per second, and (c) degrees per second squared. Figure from Hogan [Hogan, 1984b].

In a study of unconstrained two joint upper limb reaching, Abend et al. [Abend

et al., 1982] reported that human hand trajectories exhibit a coincidence between

curvature peaks and velocity valleys in drawing movements – speed decreases when

the curvature increases as seen in Figure 1-3.
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Figure 1-3: The subject was instructed to move using a curved path to reach the
target. (left) The hand path is illustrated by plotting the hand location every 10
ms. Arrows indicate direction of movement along the trajectory. (right) The hand
speed and curvature profile are plotted. The curvature profile is the shallower of
the two. Arrowheads indicate points of local curvature maxima along the trajectory;
these curvature maxima are also denoted by vertical lines over the curvature profiles.
Figure from Abend et al. [Abend et al., 1982].

When studied in explicitly elliptical trajectories, the detected velocity-curvature

relationship was described by a two-thirds power law [Lacquaniti et al., 1993], such

that the covariation between instantaneous angular velocity, 𝐴(𝑡) and the curvature,

𝐶(𝑡) was expressed as

𝐴(𝑡) = 𝐾𝐶(𝑡)2/3 (1.3)

where 𝐾 is a constant. The law can also be written in terms of a one-third power

law relating the instantaneous tangential velocity, 𝑉 (𝑡) and the radius of curvature,

𝑅(𝑡) = 1/𝐶(𝑡), expressed as

𝑉 (𝑡) = 𝐾𝑅(𝑡)1/3 (1.4)

The power law seemed to hold for drawing ellipses and several other geometric figures

(such as a lemniscate); however, the reason for this relationship was not clear. Viviani

and Terzuolo [Viviani and Terzuolo, 1982] suggested the relationship to be a result of

central computational constraints, which occur during the translation of movement

trajectories into the appropriate motor parameters. However, others wondered if this

relationship could simply be a result of biomechanics. It intuitively makes sense that

the limb slows down, to some extent, when accelerating around a corner because
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the arm is an inertial body actuated by muscles – finite force actuators with limited

stiffness.

Two cleverly-designed studies strongly support that the power law is not a result

of biomechanics4. Massey et al. [Massey et al., 1992] performed an experiment where

subjects grasped a 3D isometric handle and exerted forces continuously to draw cir-

cles, ellipses, and lemniscates with and without visual feedback. Interestingly, the

two-thirds power law was observed even when the hand did not move, indicating that

inertial biomechanics is not the cause of the curvature-velocity relationship.

Research has shown that movement planning requires the cooperative interaction

of large neuronal populations [Georgopoulos et al., 1986]. Schwartz [Schwartz, 1994]

used a population vector method to transform neuronal activity to the spatial domain.

This information was then used to visualize motor cortical representation of the hand

trajectories made by monkeys as they drew spirals. In this cortical representation,

a power law relating speed and curvature was observed. The findings of Massey et

al. and Schwartz provide strong evidence that the power law relating velocity and

curvature results from neural commands – not biomechanics.

Later research indicated that minimum jerk trajectory formation predicts the two-

thirds power law relationship [Viviani and Flash, 1995]. Moreover, a study by Huh

et al. [Huh and Sejnowski, 2015] minimized jerk during trajectory formation when a

larger variety of paths were prescribed. They predicted, and then subsequently ob-

served, different power laws, or alternatively a combination of power laws, depending

on the prescribed hand path (see Figure 1-4). This curvature/velocity relationship

appears to be a limitation of the human control system, and is hypothesized to be

imposed by the controller used by humans to plan movements.
4Work by Hicheur et al. demonstrated the presence of the speed-curvature relation in human

walking trajectories [Hicheur et al., 2005].
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Figure 1-4: Measurements of humans drawing pure frequency curves compared with
parameter-free model predictions. (A) Typical movement examples from a single
subject shown to the left. Black dots: movement trajectory data. Log speed vs.
log curvature shown to the right. Gray dots: raw curvature-speed data. Blue dots:
bandpass-filtered curvature-speed data. Green line: minimum-jerk model prediction.
Predicted 𝛽𝑝 and measured 𝛽𝑚 are given in the inset for each v. (Scale bar: 0.5.) (B)
Power law exponents (𝛽) as a function of angular frequency (𝑣). Blue circles: mean
exponent values from N = 8 subjects measured from the slopes of log(𝑣) − log(𝜅)
plots. Error bars: SD. Red line: 1/3 power law. Green line: minimum-jerk model
prediction. Figure from Huh and Sejnowski [Huh and Sejnowski, 2015].

Maurice et al. [Maurice et al., 2018b] extended this idea to investigate human

interaction with a robot handle. They asked subjects to minimize the force exerted

on a robot manipulandum. The manipulandum moved along an ellipse with different

speed profiles. Interestingly, when the robot moved with a trajectory consistent with

the speed-curvature relation, subjects were able to produce the smallest forces.

1.2.3 Movement Intermittency

Movement intermittency, the inability to move smoothly and continuously, has been

observed in slow human movements [Hogan et al., 1999]. In addition, studies with

stroke patients during rehabilitation have documented ‘fragmented’ movements com-

posed of highly-stereotyped sub-movements [Krebs, 1997,Rohrer et al., 2004]. This is

vastly different from normal human movements, which are usually quite smooth and
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follow a minimum jerk trajectory [Flash and Hogan, 1985]. These findings are not

new. For more than 100 years researchers have documented movement intermittency

during cyclical movements [Crossman and Goodeve, 1983,Woodworth, 1899], eye sac-

cades [Collewijn et al., 1988], and slow movements [Vallbo and Wessberg, 1993]. At

slow speeds, these observations are unexpected. As speed decreases, all effects which

make motion control difficult – feedback delays, inertial dynamics, and muscle noise

– also decline. Therefore, this variability cannot result from human biomechanics.

Thus, this unexpected observation appears to be a result of the neural controller.

Doeringer and Hogan [Doeringer and Hogan, 1998a] designed a single joint ex-

periment in order to determine where the source of this intermittency is introduced

into the system. They saw three possible explanations. First, the intermittency was

in the feedback pathway (Figure 1-5a). Second, the intermittency could not be by-

passed and was part of the forward pathway (Figure 1-5b). Lastly, the intermittency

was in the forward pathway but could be bypassed (Figure 1-5c). They occluded the

hand in order to test if the intermittency resulted from the visual feedback pathway.

They also provided explicit visual feedback about hand velocity on a display. They

then asked the question, could subjects eliminate intermittency if they were made

explicitly aware of their errors via visual feedback. They found that in single-joint

movements, subjects were unable to eliminate the intermittency, and that the inter-

mittency did not result from the presence of visual feedback. This indicated that the

intermittency was not in the visual feedback pathway, and could not be bypassed, as

represented by Figure 1-5b.
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(a)

(b)

(c)

Figure 1-5: Three possible locations for an ‘intermittency generator’. In the top
diagram, (a) the generator is in the feedback path, (b) the generator is in the forward
path, (c) the generator is in the forward path but can be bypassed. Figure from
Doeringer and Hogan [Doeringer, 1999].

This intermittency is believed to result from the composition of a motion plan

made up of discrete submovements [Rohrer and Hogan, 2003]. In a study of point-to-

point reaching movements by Park et al. [Park et al., 2017], subjects could not execute

slow smooth rhythmic movement; instead they ‘defaulted’ to a different approach,

composing motion using overlapping submovements.

1.2.4 Oscillations

Humans prioritize smoothness and predictability [Bazzi et al., 2018, Maurice et al.,

2018a, Sternad, 2017, Zhang et al., 2018]. Arguably, the most predictable action

is periodic; in theory, strictly periodic actions are infinitely predictable. Rhythmic

movement is old phylogenetically, and available evidence indicates that oscillatory

behavior can be evoked and sustained with minimal intervention from the central

nervous system [Brown and Sherrington, 1911, Brown, 1914, Grillner and Wallen,
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1985].

A rhythmic movement could be composed of multiple discrete movements. A

study by Schaal et al. [Schaal et al., 2004] investigated the difference between rhyth-

mic and discrete tasks using functional magnetic resonance imaging (fMRI). They

showed that in addition to areas activated in rhythmic movement, discrete movement

involved several higher cortical areas. These results provide neuroscientific evidence

that rhythmic arm movement cannot be part of a more general discrete movement

system.

Lastly, there is a limit to rhythmic actions: When the period is longer than about

2 to 5 seconds, an action can no longer be perceived nor executed as periodic [Fraisse,

1984,James, 1890].

In summary, studies of unconstrained motions at preferred speeds have found that

humans move in generally straight-line paths, planned in visually-perceived hand co-

ordinates. Humans move with bell-shaped velocity profiles which are well described

by minimizing the jerk of the hand. As predicted by minimum jerk, a relationship

between speed and curvature is observed in the hand trajectory. Neuroscientific evi-

dence suggests there is a difference between rhythmic and discrete actions. Curiously,

human movements unexpectedly become jerky at slow speeds.

1.2.5 Impedance

An early study by Cannon et al. [Cannon and Zahalak, 1982] identified the frequency

response of the elbow joint by applying small amplitude oscillations using position

disturbances. Until this point, a majority of muscle research investigated the dynam-

ics of individual muscles. This was one of the first works to show that in practice,

despite the complexity of neurophysiology, the apparent behavior of an entire joint

may be well described by a linear second-order system.

In 1985, Hogan proposed Impedance control [Hogan, 1985a,Hogan, 1985b,Hogan,

1985c]. Manipulation fundamentally requires the mechanical coupling of the manip-

ulator and the object being manipulated. Hogan proposed a theoretic framework

to control the dynamic interaction between the manipulator and the environment.
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Hogan rigorously extended this idea to the neural, muscular, and skeletal systems to

control multiple degree of freedom posture and movement [Hogan, 1985d]. The work

of Mussa-Ivaldi et al. [Mussa-Ivaldi et al., 1985] experimentally observed some of the

first evidence consistent with these theoretical predictions. They reported measure-

ments of stiffness during multiple-degree-of-freedom static posture. An early review

by Kearney and Hunter [Kearney and Hunter, 1990] summarizes many of the key

works, methods, and concerns within the estimation of limb dynamics.

A study by Bennett et al. [Bennett et al., 1992] produced one of the first time-

varying estimates of mechanical impedance. They applied small pseudo-random force

disturbances to the elbow during voluntary movement. The elbow impedance was well

described by a quasi-linear second-order model.

Not long after, Lacquaniti et al. [Lacquaniti et al., 1993] estimated the dynamics

of the elbow and wrist during ball-catching. This was one of the first studies to

estimate time-varying multi-joint impedance. They found evidence that impedance

changed before expected contact.

In addition to regulating end-point impedance by altering muscle activity, Hogan

theoretically demonstrated that apparent stiffness is also a function of limb config-

uration. End-point stiffness results from a combination of both muscle stiffness and

kinematic stiffness. One of the first works which required kinematic stiffness to be

taken into account experimentally was that of Perreault et al. [Perreault et al., 2001].

They experimentally investigated how two factors, force level and limb configuration,

influenced impedance during static posture.

In a planar point-to-point reaching task, Burdet et al. [Burdet et al., 2001] added a

destabilizing force field. They observed that subjects changed their muscle activity in

a way that increased limb stiffness to stabilize the unstable task. A related experiment

was developed to look at kinematic stiffness. A destabilizing control was applied to

a manipulandum. The task was designed to allow for kinematic redundancy. In this

case, subjects systematically changed their limb configuration to increase kinematic

stiffness in the destabilized direction [Trumbower et al., 2009, Krutky et al., 2013].

These were some of the first experiments to explicitly show that humans regulate
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impedance by changing muscle activity and skeletal configuration to accomplish stable

interaction – consistent with the predictions of Hogan [Hogan, 1985d].

Numerous other works have estimated limb impedance in different combinations

of single-joint/multi-joint and static/motion conditions [Tsuji et al., 1995,Tsuji, 1997,

Franklin et al., 2003,Franklin et al., 2007,van de Ruit et al., 2020].

Many of the developments in the algorithms for estimating impedance have been

reported in a slightly different area of research, the study of the ankle joint. Some

of the researchers that have made key contributions include Kearney et al. [Kearney

and Hunter, 1990,MacNeil et al., 1992,Lortie and Kearney, 2001,Ludvig et al., 2011,

Guarín and Kearney, 2017], Rouse et al. [Rouse et al., 2013,Rouse et al., 2014,Ficanha

et al., 2015,Nalam and Lee, 2017], and Lee et al. [Lee et al., 2014a,Lee et al., 2014b,Lee

and Hogan, 2015]. These methods are discussed in depth later in this thesis.

Interestingly, unconstrained upper-limb research has remained somewhat removed

from estimates of impedance. One exception is a study by Flash [Flash, 1987]. In

this work she demonstrated that the slight irregularities displayed in a center-out

reaching task could be explained in remarkable detail. She implemented a joint-space

impedance controller by assuming a constant joint-space stiffness based on static

postural estimates [Mussa-Ivaldi et al., 1985]. In addition, she assumed that the

zero-force trajectory 𝑥0 was described by a point-to-point minimum jerk trajectory.

Prior to the content presented in this thesis, no other work has estimated impedance

and/or the zero-force trajectory during a task which involves both motion and force.

1.2.6 Constrained Motion Studies

There are few studies that have investigated tasks involving curved constraints. Rus-

sell and Hogan [Russell and Hogan, 1989] performed studies on vertical crank turning,

and documented non-zero radial forces exerted by subjects.

With the wrist joint immobilized and shoulder constrained, the task of turning a

crank has one degree of freedom. Yet, the human arm has more than six muscles which

may be used to execute the crank turning task. This results in muscle redundancy.

Several works have investigated optimality criteria as a solution to muscle redundancy.
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Svinin et al. [Svinin et al., 2001] developed a dynamic model of the crank rotation

task. They wanted to know if humans modulate the rotational stiffness of the crank

and arm system to introduce an additional constraint. Ohta et al. [Ohta et al., 2004]

used the same model to investigate optimality criteria, and to explain how humans

deal with muscle redundancy. Two cost functions explained observed velocity, force,

and muscle activation during crank turning. One cost function combined hand contact

force and joint torque with a weighting coefficient. The other cost function combined

hand contact force and muscle force with a weighting coefficient.

McIntyre and colleagues performed experiments where subjects interacted with a

concave hemispherical surface constraint. This work suggested that subjects used a

feedforward controller [McIntyre et al., 1995], preferred to move along a geodesic path

[Berman et al., 2014], and that limb impedance was changed between unconstrained

and constrained motion [Damm and McIntyre, 2008].

In a study by Koeppen et al. [Koeppen et al., 2017], subjects interacted with a

circular constraint imposed by a robotic manipulandum. They predicted that normal

forces would be observed if subjects minimized muscular effort to perform the task

– consistent with previous observations. However, at certain crank positions muscles

transition from lengthening to shortening or vice versa – a joint reversal (see Figure 1-

6). When a joint reversal occurs, the muscle cannot contribute to the task. Therefore,

Koeppen et al. predicted that the muscle should be inactive at the reversal points.

As subjects turned at an extremely slow speed, 13.3 seconds per revolution, the

system was considered quasi-static. Thus, they predicted that there should not be a

difference between clock-wise (CW) and counter clock-wise (CCW) turning directions.

Contrary to these two predictions, they observed that muscles were not inactivated at

reversal points, and that there was a significant effect of turning direction. Thus, they

concluded that humans do not minimize muscular effort to perform the crank-turning

task.
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Figure 1-6: Colored radial lines depict reversal positions for the 3 muscle types. Dark
and light shading denotes two distinct reversals for each muscle group. At these posi-
tions along the circular constraint, the respective muscle cannot generate tangential
force. If subjects are minimizing muscle effort to perform this task, Koeppen et al.
predicted that the respective muscles would be deactivated at these positions along
the constraint. Figure from Koeppen [Koeppen et al., 2017].

1.3 Dynamic Primitives

Mounting evidence indicates that human motor control is modular, composed of prim-

itive actions [Giszter, 2015, Kargo and Giszter, 2008, Nah, 2020, Park et al., 2017,

Schaal et al., 2004,Sternad et al., 2000,Sternad and Schaal, 1999]. We have proposed

that to achieve highly dynamic and dexterous performance despite neuro-mechanical

limitations, human behavior is composed of dynamic primitives [Hogan, 2017,Hogan

and Sternad, 2007,Hogan and Sternad, 2012,Hogan and Sternad, 2013,Schaal et al.,

2000]. These are envisioned as dynamic attractors (for example, limit-cycle oscilla-

tions) that emerge from nonlinear interactions between neural and mechanical parts

of the system and, once evoked, require minimal continuous intervention from higher

levels of the central nervous system. In this theory, dynamic primitives are ‘building
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blocks’ of complex actions. The parameters of these ‘building blocks’ are encoded; this

facilitates human learning, performance, and retention of complex skills. The primi-

tives are simultaneously and sequentially combined to produce force and motion. In

practice, this may be described by defining a zero-force trajectory composed of sub-

movements and/or oscillations interacting with impedances in a Norton equivalent

network [Hogan, 2014].

Movement primitives have also been defined at the functional level, as an action

to be performed on a specific object such as reaching, grasping, or pushing [Chavan-

Dafle and Rodriguez, 2015,Doshi et al., 2020,Giszter, 2015,Hogan et al., 2020]. The

discussion of dynamic primitives in this work is distinct from these functional task

definitions of primitive, in the sense that this is a default control that always emerges

and is not bypassed – a fundamental building block. In the same way that language is

composed of multiple levels of structure such that letters compose words, and words

compose sentences, dynamic primitives may be thought of as the ‘letters’, while move-

ment primitives based on a functional task could be ‘words’. The important point

is that the existence of dynamic primitives does not preclude further organization or

simplification at higher levels.

1.4 Summary of Thesis

Chapter 2 presents a study of humans turning a horizontal planar crank. To address

this challenge, we estimated the zero-force trajectory (𝑥0) using measures of force,

measures of motion, and assuming a model of limb impedance. Here we demonstrate

the value of this method: remarkably, a speed-curvature relation emerged similar

to that seen in unconstrained movements, even though the hand moved at nearly

constant speed along a constant-curvature path.

In Chapter 3 the crank turning experiments revealed that when the hand was con-

strained to move in a circle, non-zero forces against the constraint were measured. In

this Chapter, further analysis from this experiment exposed two artifacts that could

not result from mechanics alone, but may be attributed to neural control via primi-
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tive dynamic actions. Estimated zero-force trajectories were approximately elliptical,

and their orientation significantly (and substantially) differed with turning direction.

This observation is consistent with control using underlying oscillations to generate

an elliptical zero-force trajectory. However, for periods longer than 2 to 5 seconds,

motion can no longer be perceived or executed as periodic. Instead, it decomposes

into a sequence of submovements, and that results in increased variability, which we

observed at the slowest speeds. These quantifiable performance limitations support

the hypothesis that humans simplify this constrained-motion task by exploiting at

least three primitive dynamic actions: oscillations, submovements, and mechanical

impedance.

In Chapter 4, we set out to measure mechanical impedance during the task of

crank-turning. Initially, time-based ensemble methods were employed. However, a

key assumption–the stationarity of the noise processes–was not justified. A ‘work-

around’ was developed: (1) high pass filter to remove the influence of the underlying

time-varying zero-force trajectory; (2) assume impedance is a function of configura-

tion and identify a configuration-dependent ensemble. These methods identified the

impedance parameters (mass, damping, and stiffness) in the normal direction with

an error of less than 5% in simulation and 20% in robot-only experiments. How-

ever, in the tangential direction, a fundamental limitation was discovered in practice:

impedance may be so low during movement that the natural frequency of impedance

at any one configuration overlaps the frequency content of the non-stationary noise

process present in the zero-force trajectory. This was not anticipated. The lack of

frequency separation poses a fundamental challenge to system identification of me-

chanical impedance – both in simulation and on hardware.

In the crank-turning experiments the subject’s wrist was braced, the elbow was

supported by a sling, and the shoulder was strapped to a chair. This confined the

task to two degrees of freedom. While this is advantageous for modeling, it drastically

simplifies human behavior. In Chapter 5 [Hermus et al., 2022], a robotic experiment

was designed to probe how kinematic complexity may be managed. We assumed

the impedance and programmed a Kuka LBR iiwa to interact with an InMotion
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planar robot while it simulated a virtual circular constraint – as in the human subject

experiments. Interestingly we found that when the nullspace dimension increased a

method based on impedance superposition was comparable to nullspace projection (a

review of impedance superposition was presented in [Verdi, 2019]). This suggest that

high dimensionality may be a ‘blessing’ not a ‘curse’.

In robotics, hybrid control allows simultaneous, independent control of both mo-

tion and force and it is often assumed that humans can also modulate force indepen-

dent of motion. In Chapter 6, we experimentally tested that assumption. Participants

were asked to apply a constant 5 N force on a robot manipulandum that moved along

an elliptical path. After initial improvement, force errors quickly plateaued, despite

practice and visual feedback. Within-trial analyses revealed that force errors varied

with position on the ellipse, rejecting the hypothesis that humans have indepen-

dent control of force and motion. The findings are consistent with a feed-forward

motion command composed of two primitive oscillations acting through mechanical

impedance to evoke force.

In Chapter 8, the main findings of the work are reviewed and future work directions

are discussed.

As this thesis includes peer-reviewed published papers (e.g. in Chapters 2, 5, and

6), there may be a certain amount of repetition. This repetition was retained as it

may help to re-cap the context of the separate studies.
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Chapter 2

Separating Neural Influences from

Peripheral Mechanics: The

Speed-Curvature Relation in

Mechanically-Constrained Actions

This chapter is an adapted version of [Hermus et al., 2020] published in the Journal

of Neurophysiology.

2.1 Introduction

Experimental studies of motor neuroscience should start with macroscopic behavior

as there are some remarkably robust patterns that can guide the investigation of

neural control [Krakauer et al., 2017]. One such pattern robustly observed in curved

motions is a power-law relation between hand path curvature and speed: hand speed

decreases as curvature increases. This finding has been widely reported in uncon-

strained movements for more than 30 years, though its implications for neural control

have been controversial [Abend et al., 1982, Dayan et al., 2007, Gribble and Ostry,

1996,Hicheur et al., 2005,Huh and Sejnowski, 2015,Massey et al., 1992, Schaal and

Sternad, 2001,Schwartz, 1994,Viviani and Flash, 1995,Viviani and Stucchi, 1989,Vi-
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viani and Terzuolo, 1982]. Specifically, discussion of the power law debated whether

this robust relation is due to biomechanical or neural influences. The present study

examined a simple constrained-motion task to test whether this pattern persists even

when mechanical conditions prevent its expression. It did, suggesting that the speed-

curvature relation is present in the neural organization of action.

While human dexterity vastly exceeds that of modern robots, the human neuro-

mechanical system is orders of magnitude slower than its robotic counterparts [Kandel

et al., 2013, Loram et al., 2005, Shepard and Metzler, 1971]. Slow neural transmis-

sion and muscle response implies that humans have to rely heavily on feed-forward

(i.e. predictive) control, especially when physically interacting with objects and

environments where bidirectional interaction forces arise. Prior work on the con-

trol of dynamically complex objects showed that humans adjust their behavior to

prioritize predictability of the object dynamics [Bazzi et al., 2018, Maurice et al.,

2018b,Nasseroleslami et al., 2014,Sternad, 2017,Zhang et al., 2018]. Here we extend

the study of predictability to kinematically constrained actions.

One way to move predictably is to move smoothly; and smoothness, quantified

by mean squared jerk, has been demonstrated in numerous studies of unconstrained

reaching [Flash and Hogan, 1985, Hogan, 1982, Hogan, 1984b, Nelson, 1983, Sternad

et al., 2010]. Smoothness can also account for the relation between hand path cur-

vature and tangential speed [Abend et al., 1982, Viviani and Terzuolo, 1982]. For

simple curves (e.g. ellipses) this is the so-called ‘two-thirds power law’ [Schaal and

Sternad, 2001, Sternad and Schaal, 1999, Viviani and Flash, 1995]. For more com-

plex curves, smoothness requires different exponents and more complex relations (a

‘spectrum of power laws’) [Huh and Sejnowski, 2015], but in all cases a temporal

coincidence between extrema of tangential speed and path curvature is derived from

theory and observed in practice. A power-law speed-curvature relation is consistent

with a preference for smoothness and predictability.

Much of the previous neuroscience literature has focused on simple unconstrained

movements. While these paradigms have rendered manageable data for analysis and

modeling, it is difficult to generalize the insights gained to understand tasks that
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involve physical interaction, essential in any kind of tool use. While some animals

are capable of making and using tools, this ability is vastly more developed in hu-

mans [Boesch and Boesch, 1990,Hunt, 1996,Johnson-Frey, 2004,Kenward et al., 2005].

Many tools and daily interactions with the environment introduce kinematic con-

straints, such as turning a steering wheel, opening a door, and turning a crank. For

example, opening a door or turning a steering-wheel confines the hand to a planar

circular path with constant curvature; if the speed-curvature relation generalizes to

object manipulation, no speed fluctuations should be evoked. However, if that rela-

tion is of primarily neural origin, it may still influence behavior even in this situation.

This study tested whether a speed-curvature relation – a corollary of predictability –

was present in the neural command even in those cases.

A central challenge in motor neuroscience is to tease apart the contributions of

neural control and biomechanics, a problem that is even more pronounced during

interactive tasks. During physical interaction, a limb is fundamentally subject to at

least two sets of inputs for every output: Force exerted on an object depends not

only on neural activity but also on the object’s motion. The relation between dis-

placement and the force it evokes may be characterized mathematically by mechanical

impedance (a dynamic generalization of stiffness). In principle, knowledge of mechan-

ical impedance combined with simultaneous measurement of force and motion during

object manipulation would allow us to ‘subtract off’ or ‘peel back’ peripheral biome-

chanics to uncover underlying neural influences. In practice, mechanical impedance

is nonlinear and time-varying and measuring it during movement, though possible,

is challenging [Kearney and Hunter, 1990]. Moreover, measurement inevitably intro-

duces perturbations that may alter behavior.

An alternative (pursued here) is to approximate mechanical impedance using a

plausible mathematical model based on measurements made under static postural

conditions. Given this model and observations of actual motion and exerted force, we

define a construct that we call the ‘zero-force trajectory’ the trajectory that would

have been followed if the external forces were zero. The zero-force trajectory sum-

marizes one consequence of neural activity and expresses it as a quantity that may
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be compared with actual motion. To evaluate its sensitivity to the uncertainty about

mechanical impedance, the results were tested over a wide range of parameter varia-

tions.

Motion under a circular constraint, i.e. turning a crank, imposes a constant

curvature hand path. If a speed-curvature relation applies to hand motion during

object manipulation, turning a crank should not elicit any variation of hand speed.

However, the zero-force trajectory is not confined to constant curvature. If a speed-

curvature relation, consistent with smoothness and predictability, is a feature of neural

control, it should be manifest in the consequence of neural action that is expressed

by the zero-force trajectory. The central hypothesis tested in this study was that the

zero-force trajectory exhibits a systematic relation between curvature and speed.

To improve the ability to subtract off the influences of inertial mechanics and

neuro-muscular dynamics, crank-turning was studied at three speeds covering a wide

range: 1) a speed close to the fastest that subjects could manage, such that inertial

effects predominate; 2) a speed near subjects’ preferred or comfortable speed; 3) an

extremely slow speed, such that the action was quasi-static and all dynamic effects

were negligible. To encourage movements with constant speed along the constant

curvature path, we provided a visual display of instructed speed together with visual

feedback of actual hand speed. As inertial behavior is strongly directional and varies

with limb position, we examined clockwise and counter-clockwise rotation.

Remarkably we found that, independent of the direction of rotation, when periph-

eral biomechanics were subtracted, the zero-force trajectory exhibited a coincidence

of curvature and velocity extrema resembling that reported for unconstrained motion.

2.2 Methods

2.2.1 Participants

Ten healthy male college-age students were recruited for the study. All participants

were right-handed, and none reported any biomechanical injury to their arm nor any
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neurological problems. Prior to participating in the study, they were informed about

the experimental procedure and signed the informed consent document approved by

MIT’s Institutional Review Board.

2.2.2 Experimental Apparatus and Procedure

The crank used in this experiment is shown in Figure 2-1. The crank arm was

mounted on a high precision incremental optical encoder/interpolator set (Gurley

Precision Instruments encoder #8335-11250-CBQA, interpolator #HR2-80QA-BRD)

with a resolution of 0.0004 degrees per count. A six-axis force transducer (ATI Model

15/50) was attached to the end of the crank, with a handle mounted on it. A spool

managed the force transducer cable.

Figure 2-1: Experimental setup. The crank displayed in the inset was used to provide
a circular constraint. Vision of the arm and crank was occluded but the subject was
provided with visual speed feedback. The wrist was braced, the elbow was supported
by a sling, and the shoulders were strapped to a chair.

During the experiment, the subject’s arm was occluded from view by a wooden

structure, which did not limit the range of motion. The upper arm was suspended
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by a canvas sling connected to the ceiling using a steel cable; upper and lower arm

were in the plane of the crank. The subject sat in a chair with a rigid back, while

the shoulder was constrained by a harness attached to the back of the chair. The

subject was positioned such that the crank, with radius 10.29 cm, was well within

the workspace of the arm.

Data acquisition was controlled by a computer running the QNX real-time oper-

ating system on an Intel Pentium 100 processor. The encoder, sampling at 200 Hz,

was connected to a set of counters and to the computer via digital I/O. The ATI force

transducer’s signal, sampled at 100 Hz, was processed by its embedded controller and

input to the computer through the digital I/O. The visual display, also generated by

the computer, was on a 17-inch monitor (311 x 238 mm, resolution 1280 x 1024, 76

Hz) which was mounted approximately 75 cm from subjects’ eyes. The experiment

was divided into two sections: trials at subjects’ preferred or ‘comfortable’ speed and

trials at a visually-instructed speed. The design of the experimental conditions is

graphically overviewed in Figure 2-2.

 Slow
CW

 Preferred
CW

 Preferred
CCW

Fast
CCW

Medium
CCW

Slow
CCW

Fast
CW

Medium
CW

Visually-instructed speed trials

 30 trials, 7 w/out 
feedback (gray)

 10 trials

Figure 2-2: Experimental design. Each of the 10 subjects completed 20 trials at their
preferred speed, 10 trials in clockwise (CW) and counterclockwise (CCW) directions.
In the instructed-speed trials subjects completed 30 trials in each condition. Visual
feedback was not provided on the display for 7 of the 30 trials during each of the
instructed-speed blocks.

At the start of the experiment, subjects performed 20 trials at their preferred

speed, 10 trials in clockwise direction (CW) and 10 in counterclockwise direction
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(CCW); each trial lasted 8 seconds. Subjects were not provided any visual feedback

during these trials. Thereafter, subjects performed six blocks of 30 trials each with

visual specification of one of three target speeds (slow: 0.075, medium: 0.5, and fast:

2.0 revolutions per second), in either clockwise or counter-clockwise directions (Figure

2-2). The order of the speed and direction blocks was randomized across subjects. The

three speeds were selected to cover a significant range: 0.075 rev/s was extremely slow

(required over 13 seconds per revolution), 0.5 rev/s was close to subjects’ preferred

speed, and 2.0 rev/s was close to the fastest subjects could turn the crank. Visual

feedback on the monitor displayed the target speed, as well as subjects’ real-time hand

speed. The horizontal axis was time, and the vertical axis was speed. Target speed

was displayed as a continuous horizontal line in the middle of the screen. Subjects’

speed was estimated using a backward finite difference algorithm. The relationship

between crank motion and screen display was re-scaled for every block; the width of

the screen corresponded to the time of the trial, which was a function of the desired

crank speed. Seven trials in each block were ‘blind’ catch trials, in which visual

feedback of the actual hand speed was removed, while the display of target speed was

retained.

In the slow-speed conditions, each trial lasted 45 seconds; in the medium-speed

conditions, each trial lasted 16 seconds; in the fast-speed conditions, each trial lasted

4 seconds. This yielded 8 turns of the crank for the fast and medium conditions,

but only about 3.4 turns of the crank for the slow condition. The duration of the

slow-speed trials was chosen as a compromise between acquiring adequate data and

avoiding subject fatigue.

2.2.3 Data Processing and Analysis

Crank speed and normal force were computed with respect to crank angle divided

into 360 angle bins. As the different target speeds were sampled at the same rate with

different time durations, they contained a different number of samples per bin. There-

fore, the data were interpolated to the largest number of samples, which was 9001

samples at the slowest target speed, 0.075 rev/s. The interpolation was performed
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using a piece-wise cubic Hermite interpolating polynomial [Fritsch and Carlson, 1980].

After interpolation, the speed or force profiles were binned into 360 sections corre-

sponding to a full rotation of the crank. Then the mean of each bin was taken,

resulting in a speed or force profile over 360 crank angles. In all trials, the first 1.5

seconds were discarded to eliminate transients before calculating summary measures.

Dependent measures were mean speed, standard deviation (SD) of speed, mean nor-

mal force, and SD of normal force.

2.2.4 Trials at Preferred Speed

To characterize subjects’ preferred behavior, we tested whether the mean normal force

was significantly different from zero, and whether turning direction influenced the

dependent measures. The speed mean and standard deviation (SD) were computed

for the initial 10 trials performed at the preferred speed. Then these quantities were

averaged to produce a mean speed and SD for each subject. Mean force and SD of

force were similarly averaged for each subject. One subject moved much faster than

all others (beyond two standard deviations of the other subjects). His data were

excluded from subsequent analysis of the preferred speed trials.

Paired-sample t-tests were carried out to test for significant effects of turning

direction on mean speed and normal force. Student’s t-tests were used to detect

whether the mean normal force was significantly different from zero. Significance

values of post-hoc t-tests were adjusted using the Sidak-Bonferroni procedure, where

the original significance level was defined as 𝛼, the number of t-tests was m, and

the corrected Sidak-Bonferroni significance values were 𝛼𝑆𝐼𝐷 = 1 − (1 − 𝛼)1/𝑚. All

statistical analyses were performed using the SPSS statistical software package (SPSS

Inc., Chicago IL); the significance level was set to 5%.

2.2.5 Trials at Instructed Speeds

In the first of the trials in which speed and direction were instructed, subjects often

did not achieve the task goal; they occasionally turned in the wrong direction, did
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not complete a full cycle, or turned at the wrong speed. Hence, the first trial in each

block was discarded. The seven ‘catch’ trials, without visual feedback, were omitted

from initial statistical analysis. The speed mean and SD were computed for each of

the remaining trials.

To quantify the influence of speed and direction, a linear mixed model was em-

ployed; it was then tested using analysis of variance (ANOVA). The linear model

which represented the observed dependent measure 𝑌𝑖,𝑗,𝑘 was expressed as

𝑌𝑖,𝑗,𝑘 = 𝜇𝑇 + 𝛼𝑗 + 𝛽𝑘 + 𝛾𝑙 + (𝛼𝛽)𝑗,𝑘 + (𝛼𝛾)𝑗,𝑙 + (𝛽𝛾)𝑘,𝑙 + (𝛼𝛽𝛾)𝑗,𝑘,𝑙 + 𝐸𝑖,(𝑗,𝑘,𝑙) (2.1)

where the grand mean is 𝜇𝑇 , the fixed effect of speed is 𝛼𝑗, where 𝑗 is an index from

1 to 3, the fixed effect of direction is 𝛽𝑘, were 𝑘 is an index from 1 to 2, the random

effect of subject is 𝛾𝑙, where 𝑙 is an index from 1 to 10, and the stochastic sampling

effect 𝐸𝑖,𝑗,𝑘, where 𝑖 is an index from 1 to 22 (representing the trial number excluding

the first and the catch trials). As above, all statistical analyses were performed using

the SPSS statistical software package (SPSS Inc., Chicago IL); the significance level

was set to 5%.

2.2.6 Simulation of Passive Inertial Mechanics

Physical interaction with a kinematic constraint changes the nonlinear inertial me-

chanics with which the neuro-muscular system interacts. Despite the familiarity of

this constrained-motion task, a failure to compensate perfectly for these changes

might account for some of the observed patterns of force and motion. To provide

insight about these highly nonlinear and non-intuitive effects we simulated the fluc-

tuations of speed and force that would be predicted from the configuration-dependent

variation of inertial mechanics subject to this kinematic constraint, without any con-

tribution from muscle action. The arm was modeled as a two-link planar serial linkage,

with no gravitational or frictional effects. Inertial parameters were estimated based

on the cadaver studies of Dempster [Miller and Nelson, 1973,Plagenhoef, 1971]. The

shoulder joint was located at the thorax which was assumed to be stationary. This
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approach is the same as that used by Ohta et al. [Ohta et al., 2004]. The variation

of motion due to closed-chain inertial dynamics was simulated. This was done by

setting muscle-generated joint torques and crank damping to zero in the model. The

system was initialized at the zero-degree position, with the initial angular velocities of

the three target speeds: slow (0.075 rev/s), medium (0.5 rev/s), and fast (2.0 rev/s).

Numerical integration was performed using MATLAB’s ode45 algorithm [Shampine

and Reichelt, 1997].

2.2.7 Zero-Force Trajectories

One way to describe the dynamics of interaction uses a mechanical impedance opera-

tor 𝑍{·} (Hogan, 1985a, 1985b). The force time-function 𝐹 (𝑡) can be computed from

the displacement time-function Δ𝑥(𝑡), 𝐹 (𝑡) = 𝑍{Δ𝑥(𝑡)}. Displacement is defined as

Δ𝑥(𝑡) = 𝑥0(𝑡)− 𝑥(𝑡) where 𝑥(𝑡) is the actual hand position and 𝑥0(𝑡) is a zero-force

trajectory. Though muscle force production is a complex function of many factors,

its dominant behavior can be well-described by a function of muscle length and its

rate of change [Hill, 1938,Joyce et al., 1969,Rack and Westbury, 1969]. Accordingly,

a simplified model of muscle mechanical impedance was used, a linear spring and

viscous damping element with common displacement [Hogan, 1984a]. To implement

this model on a two-joint arm, joint stiffness was assumed to be a 2×2 symmetric

matrix, independent of configuration. Joint damping, also a 2×2 symmetric matrix,

was proportional to joint stiffness. This is similar to the muscle model previously

used by Flash (1987), but in this case we used a damping term which was defined

relative to the zero-force trajectory.

The joint torque was defined by

𝜏 = 𝐾(𝑞0 − 𝑞) +𝐵(�̇�0 − 𝑞) (2.2)
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The stiffness in units of N-m/rad was defined as

𝐾 = 𝐺

⎡⎣ 𝐾11 𝐾12

𝐾21 𝐾22

⎤⎦ = 𝐺

⎡⎣ 29.5 14.3

14.3 39.3

⎤⎦ (2.3)

The viscous damping in units of N-m-s/rad was defined as

𝐵 =

⎡⎣ 𝐵11 𝐵12

𝐵21 𝐵22

⎤⎦ (2.4)

𝐾11 and 𝐵11 were the net shoulder joint stiffness and damping, 𝐾12, 𝐵12, 𝐾21, and

𝐵21 were the two-joint parameters, and 𝐾22 and 𝐵22 described the elbow parameters;

𝐺 was a dimensionless scalar. The values for joint stiffness and damping were con-

sistent with those of Flash [Flash, 1987], such that 𝐵 = 𝛽𝐾. The 𝛽 term had units

of time, consistent with a first-order model of muscle impedance [Hill, 1938]. A gain

of 𝐺 = 0.5 was used in the slow and medium cases, and a gain of 𝐺 = 1.5 was used

in the fast case. Damping was derived from stiffness by multiplication by a constant

factor, 𝛽, which was 0.05 s for the slow and medium cases, and 0.1 s for the fast cases.

Substituting Equation 2.2 into Equation A.2, A.3, and A.4 (from Appendix A),

the equation could be manipulated to solve for �̇�0:

�̇�0 = 𝐵−1
[︁
𝑀𝐽−1

[︀
{𝐽𝑀−1𝐽𝑇 + 𝑟2𝐼−1𝑒𝑒𝑇}𝐹 − 𝐽�̇� − 𝑟𝜃(𝜃𝑛+ 𝑏𝑐𝐼

−1𝑒)
]︀

+ ℎ−𝐾(𝑞0 − 𝑞)
]︁
+ �̇� (2.5)

Integrating Equation 2.5 allowed for the computation of the zero-force trajectory

corresponding to a prescribed position, velocity, acceleration, and force. The velocity

and force signals were filtered with a second-order zero-phase-lag Butterworth filter

using a cutoff frequency of 10 Hz, except in the slow condition. The tangential force in

the slow condition was small in magnitude. At slow speeds, a large number of samples

with a magnitude close to the resolution of the sensor were observed. This resulted

in artifactual step changes in the force measurements. To eliminate this artifact, the
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tangential force in the slow condition was filtered with a cutoff frequency of 0.5 Hz,

far faster than the turning frequency of the slow task (0.075 rev/s).

2.2.8 Speed - Curvature Relation

In unconstrained motions, the relation between curvature and speed has been well

documented in human arm trajectories. This study investigated if this relation was

evident in the zero-force trajectory. To compute the speed and curvature of the zero-

force trajectory, it was transformed into Cartesian coordinates, 𝑥0 and 𝑦0. Using the

methods of Dohrmann et al. [Dohrmann et al., 1988] the derivatives of the Cartesian

position of the zero-force trajectory were computed. Smoothing parameters of 0.03,

10−7, and 10−11 were used for the slow, medium, and fast trials, respectively. These

derivatives were used to compute tangential speed, 𝑉0, and curvature, 𝜅0

𝑉0 =
√︁
�̇�2
0 + �̇�20 (2.6)

𝜅0 =
�̇�0𝑦0 − �̇�0�̈�0

(�̇�2
0 + �̇�20)

3/2
(2.7)

Positive curvature would be consistent with a positive z rotation, according to the

right-hand rule. However, for ease of computation the radially inward direction was

defined as positive curvature.

To test the relation between speed and curvature, local minima in tangential

speed and local maxima in curvature were identified and their temporal relation was

quantified. For each local minimum in tangential speed, the nearest local maximum

in curvature was found. The signed distance between the two extrema was normalized

by the target speed and defined as the interval Δ. This was computed for each subject

in each condition, and the data were pooled across trials. The 95% confidence interval

for each subject in each condition was computed.
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2.2.9 Sensitivity to Impedance Assumptions

To the best of our knowledge, limb impedance measurements during physical inter-

action with a constraint have not been reported. Thus, impedance parameters were

based on unconstrained static arm stiffness and single joint damping measurements.

Consequently, the impedance parameters, the gain term for the stiffness, 𝐺, and the

proportional damping term, 𝛽, were varied to understand if the results were sensitive

to the impedance values used to compute the zero-force trajectory. When the gain

and damping terms changed, the zero-force trajectory was expected to change. How-

ever, the main question was whether any speed-curvature relation was affected when

the zero-force trajectory changed shape. To this end, the 95% confidence interval for

Δ was computed when the 𝐺 and 𝛽 term were each varied over a 3:1 range.

2.3 Results

2.3.1 Speed and Force at Preferred Speed

The preferred speed trials were collected to establish a baseline and quantify human

performance without visual feedback. A representative subject’s turning speed and

normal force are plotted with respect to crank angle in Figure 2-3. His speed fluc-

tuated about 0.5 rev/s and systematic variations with angular position were evident

(Figure 2-3, top panel). Further, the subject’s force alternated between tension (pos-

itive) and compression (negative) depending on the crank angle (Figure 2-3, bottom

panel). Some minor differences appear between the two turning directions.
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Figure 2-3: Representative data from one subject’s tangential speed (top) and normal
force (bottom) with respect to crank position at ‘comfortable’ speed. Blue lines
indicate clockwise (CW) trials and red lines indicate counter-clockwise (CCW) trials.
Each line represents binned speed or force values for one of the ten trials. The shading
indicates one SD from the mean across trials.

Despite the appearance of occasional differences between clockwise and counter-

clockwise performance, there was no statistically significant difference between mean

speed in the clockwise (0.37± 0.11 rev/s), and counter-clockwise (0.40± 0.10 rev/s)

conditions (𝑝 = 0.539). There was also no significant difference between mean normal

force in the clockwise (−0.58 ± 1.65 N), and counter-clockwise (−0.12 ± 1.43 N)

conditions (𝑝 = 0.462). Furthermore, the mean normal force was not significantly

different from zero in the clockwise condition (𝑝 = 0.325, 𝛼𝑆𝐼𝐷 = 0.0253), or counter-

clockwise condition (𝑝 = 0.811, 𝛼𝑆𝐼𝐷 = 0.0253). Figure 2-4 displays these dependent

measures as a function of mean speed, illustrating the lack of differences between the

two rotation directions.
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Figure 2-4: Dependent measures with respect to mean speed for preferred speed
trials: standard deviations of speed (top), mean normal force (middle), and standard
deviations of normal force (bottom). Blue dots: CW; red circles: CCW.
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2.3.2 Speed and Force at Instructed Speeds

In these trials subjects were instructed to turn at one of three speeds, in both clockwise

and counter-clockwise directions, with visual feedback provided. Figure 2-5 shows

mean speed and force of all subjects with respect to crank angle for the slow, medium

and fast conditions, revealing a noticeable pattern with respect to crank angle. Figure

2-6 summarizes the dependent measures for the three different target speeds and

directions.
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Figure 2-5: Mean and standard deviations of speed (dotted blue) and normal force
(dotted green) versus crank angle for all subjects. The shading indicates one standard
deviation from the mean across subjects. The solid lines show fluctuations of speed
(blue) and normal force (green) due to passive inertial mechanics. Data are from the
clockwise direction trials. Note the different scales on the ordinates.
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Figure 2-6: Dependent measures, mean speed, SD speed, mean normal force, and
SD normal force. Error bars indicate the SD across subjects. Clockwise trials are
depicted in blue, counter-clockwise trials are in red; black dashed lines indicate the
fluctuations which result from only inertial effects. As inertial dynamics are not a
function of direction there is only one line for the simulations (see Appendix II).

The dependent measures were analyzed with respect to the experimental condi-

tions speed and direction and displayed in Figure 2-6. A main effect of target speed on

mean speed was observed (𝐹2.0,18 = 3579.513, 𝑝 < 0.001), indicating that, as expected,

subjects could successfully perform this task. The SD of speed showed a significant

interaction between speed and direction (𝐹2.0,18 = 5.317, 𝑝 < 0.015) and a main effect

of speed (𝐹2.0,18 = 477.497, 𝑝 < 0.001). Two paired-sample t-tests compared the SD

of speed at different instructed speeds. There was a significant difference between

the slow and medium conditions (𝑝 < 0.001, 𝛼𝑆𝐼𝐷 = 0.0253), and the medium and

fast conditions (𝑝 < 0.001, 𝛼𝑆𝐼𝐷 = 0.0253). Thus, target speed was the predominant

factor influencing the mean and SD of speed.
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Analysis of the mean normal force (Figure 2-6 lower left) revealed a significant

interaction between speed and direction (𝐹2.0,18 = 3.752, 𝑝 = 0.043), and a main

effect of target speed (𝐹2.0,18 = 258.878, 𝑝 < 0.001). There was no significant effect of

direction. Paired-sample t-tests identified a significant difference between the slow and

medium conditions (𝑝 < 0.001, 𝛼𝑆𝐼𝐷 = 0.0253), and the medium and fast conditions

(𝑝 < 0.001, 𝛼𝑆𝐼𝐷 = 0.0253). The large difference between the medium and fast

conditions was clear, while the significant difference between the slow and medium

speeds was less pronounced. Lastly, analysis of the SD of normal force revealed only

a significant effect of speed (𝐹2.0,18 = 749.292, 𝑝 < 0.001). Target speed was the

predominant factor influencing the mean normal force.

In the instructed speed trials, occasional catch trials occurred in which visual

feedback was withheld. Comparing the dependent measures for the catch trial and

the immediately preceding trial with visual feedback assessed whether visual feedback

affected subject performance. These comparisons resulted in several significant inter-

actions, including three-way interactions. However, the magnitudes of these effects

were very small.

2.3.3 Zero-Force Trajectory

The bidirectional interaction between the forces exerted on the constraint and the

force observed at the hand was described by mechanical impedance. A model of

upper-limb mechanical impedance was assumed, and the zero-force trajectory (defined

above) was computed. Figure 2-7 shows one example from a representative subject

in the three speed conditions in the left column; the right column shows the mean

paths from all subjects. It is clear in all subjects that the path of the zero-force

trajectory deviated from circular, both closer to and further from the center of the

crank circle and was roughly elliptical. The slowest speed revealed the most elliptical

path. Further, zero-force speed varied systematically along the elliptical trajectory.

Visually, the speed peaks corresponded well to the curvature valleys. This zero-force

trajectory enabled a test of the hypothesis that a systematic speed-curvature relation

is found in the motor consequences of neural activity.
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Figure 2-7: Figure 7: Left column: Representative trial from one subject in each of the
speed conditions. Right column: Average zero-force trajectories for all 10 subjects.
The path defined by the constraint is shown by the black dashed circle. The zero-
force trajectories are shown by variable color lines. The plots are from the clockwise
direction trials. The color bar indicates speed along the zero-force path normalized
by its range.
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To test this relation quantitatively, the extrema of speed and curvature were de-

termined and the difference in crank angle between speed and curvature extrema Δ

was computed. Exact temporal coincidence would lead to zero Δ values. Figure 2-8

shows representative profiles of the speed and curvature of the zero-force trajectory

for a single trial performed by one subject at each of the three speed conditions in the

clockwise direction. The circles at the extrema highlight the temporal coincidence

of the corresponding extrema in speed and curvature. The data of the same subject

are summarized in the histograms for the three speed conditions. The 95% confi-

dence intervals for the Δ parameter of all subjects in the 6 conditions were less than

3% of a revolution, indicating that the curvature peaks corresponded to the speed

valleys. This coincidence of extrema recapitulates observations of hand motion in

unconstrained movements.
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Figure 2-8: Left column: Zero-force trajectory speed (black) and curvature (red) for
a single trial performed by one representative subject at each of the three speed con-
ditions in the clockwise direction. The circles highlight the extrema in both profiles.
Right column: Histograms of Δ for all trials performed by one representative subject
at each of the three speed conditions in the clockwise direction. Top row: slow, mid-
dle row: medium, bottom row: fast.
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Figure 2-9: 95% confidence intervals of the mean of Δ for all 10 subjects (S1-S10)
in each speed and direction. Confidence intervals are grouped by speed, and the
color indicates turning direction [blue: clockwise (CW), and brown: counter-clockwise
(CCW)].

2.3.4 Sensitivity Analyses of the Zero-force Trajectory and its

Effect on the Speed-Curvature Relation

The zero-force trajectory is a construct derived from our experimental observations

based on several assumptions combined with parameter values from the published

literature. To assess the sensitivity of this construct to the assumptions used to

compute it, key parameters of the model were varied over a 3:1 range. A linear

time-invariant first-order model of mechanical impedance was assumed, with damping

proportional to the assumed stiffness. Values for the stiffness term 𝐺 were [0.25, 0.5,

0.75] (slow and medium), and [0.75, 1.50, 2.25] (fast); values of the proportionality

constant 𝛽 were [0.025 s, 0.05 s, 0.075 s] (slow and medium), and [0.05 s, 0.1 s, 0.15

s] (fast). We anticipated that if the impedance was varied, the zero-force trajectory

would change, and it did. Nevertheless, the coincidence of the curvature and speed

extrema was still observed, even when the zero-force path changed shape. The 95%
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confidence interval for Δ was always less than 4% of a revolution from zero. Hence, the

coincidence between curvature and speed extrema was not sensitive to the particular

values of stiffness and damping and the observed results were robust.

2.4 Discussion

Long-standing experience in robotics has shown that physical interaction is chal-

lenging [Colgate and Hogan, 1989, Colgate and Hogan, 1988, Paul, 1987, Whitney,

1977]. Specifically, contact with a kinematic constraint may compromise stability.

The present study examined how humans managed physical interaction by investi-

gating their patterns of motion and force while turning a crank. This action is typical

of many activities of daily living that humans perform with ease, with no evidence of

the instability that robots typically exhibit. However, it has been proven that proper-

ties of interactive dynamics (mechanical impedance) afford a general solution to the

stability problem: coupled stability is guaranteed if mechanical impedance mimics

that of an energetically passive object [Colgate and Hogan, 1989,Colgate and Hogan,

1988]. Remarkably, human limb impedance appears to have this property [Lee et al.,

2014a,Lee et al., 2014b].

Even if stability is assured, if the action is coded in terms of motion control,

negotiating a constraint may require detailed knowledge of the constraint and pre-

cise musculo-skeletal coordination. Evidence from reaching studies suggests that the

control of unconstrained hand motion involves some form of internal model. That

model includes kinematics, relating hand position to joint angle or muscle length; and

dynamics (of at least the musculo-skeletal system) relating muscle force to hand mo-

tion [Kluzik et al., 2008,Lackner and Dizio, 1994,Wolpert et al., 1995,Wolpert et al.,

1998]. However, constrained motion introduces a ‘closed chain’ and that changes both

the kinematic and dynamic models and makes them much more challenging [Slotine

and Asada, 1992].

One proposed robotic approach to constrained motion is ‘hybrid control’: parse

the workspace into independent directions and control force when motion is zero,
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i.e. normal to a constraint, and control motion when force is zero, i.e. tangent to

a constraint [Khatib, 1987,Mason, 1981,Raibert and Craig, 1981]. While consistent

with recent work by Chib et al. [Chib et al., 2009], it requires precise knowledge

of the constraint in order to identify the normal and the tangent. Such precision

in human movement control seems implausible. Instead, humans may exploit the

‘softness’ of neuro-muscular mechanical impedance to reduce the required knowledge

and precision. Our experiments were designed to explore the plausibility of such

a simplified approach. For that reason, this disarmingly simple task may provide

significant insight about how humans manage more sophisticated tools.

2.4.1 Patterns of Speed and Force

When subjects turned the crank at their preferred rate, small fluctuations of speed

about a mean value were observed. Normal force fluctuated about zero, and both

varied systematically with crank angle, consistent with previous work [Ohta et al.,

2004, Russell and Hogan, 1989]. The direction of rotation had no significant effect

on the means of these measures. When subjects moved at constant speed guided

by a visual target, fluctuations of speed and normal force that varied systematically

with crank position were again observed. There was a statistically significant but

weak interaction between instructed speed and direction for the standard deviations

of speed and for mean normal force. However, this interaction merely reflected the

sensitivity of the statistical analysis as the magnitude of the directional effect was

negligible (Figure 2-6). To test the influence of visual feedback we compared the

dependent measures on the catch trials (in which visual feedback was removed) with

the immediately preceding trials. While some statistically significant differences were

observed, they were negligibly small. Removing visual feedback had no substantial

effect.

Might these fluctuations reflect imperfect compensation for musculo-skeletal dy-

namics? Inertial forces increase with the speed of crank rotation, with a concomitant

increase of muscle force, and hence muscle noise. Consistent with imperfect com-

pensation, the standard deviations of speed and normal force both increased with
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instructed speed. To test whether the systematic variation of speed and force with

crank angle might also be due to imperfect compensation, simulations of the passive

inertial dynamics of the arm constrained by the crank, but with no muscle action,

were performed. These simulations exhibited systematic variation of both force and

speed with crank angle, but with patterns that could not account for our observa-

tions. Most notably, at the slowest speed the simulated normal force was essentially

zero; that was one reason why such a slow speed (over 13 seconds per revolution) was

chosen. The pattern displayed by human subjects was quite different (Figure 2-5).

2.4.2 The Zero-Force Trajectory

The zero-force trajectory is a construct based on measured force and motion, com-

bined in a model of peripheral neuro-mechanics. It allows us to ‘peel back’ the periph-

eral neuro-mechanics to uncover one consequence of the underlying neural commands,

and that consequence is expressed in terms of motion. It is similar to, but distinct

from the virtual trajectory of the equilibrium-point hypotheses [Bizzi et al., 1982,Bizzi

et al., 1984, Feldman, 1966, Feldman, 1986]. That is because the forward-path dy-

namics between neural input and actual motion is, in general, quite different from

the interactive dynamics (mechanical impedance) used to construct the zero-force

trajectory. As a result, the zero-force trajectory may differ from the virtual trajec-

tory [Gribble et al., 1998]. More importantly, unlike the equilibrium-point trajectory,

we remain agnostic about whether the central nervous system actually encodes the

zero-force trajectory. Instead, this quantity is a way to interpret measured force

and motion, in combination with a reasonable, albeit simplified, model of peripheral

neuro-mechanics.

If the exact neuro-mechanical impedance were known for each subject, this con-

struct would be an exact (i.e. noise-free) measure of the motion consequences of neural

commands. However, as we used average measures of neuro-mechanical impedance

obtained from different subjects and during static conditions, this construct is at

best a noisy and uncertain estimate based on a number of assumptions. It assumed

a model of neuro-muscular dynamics that is time-invariant, first-order, and linear.
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All of these assumptions are questionable, or even demonstrably incorrect, but they

served as workable approximations. The most critical assumptions used to compute

the zero-force trajectory were that impedance was linear and time-invariant, with

a constant stiffness and damping in joint coordinates. Linearization is valid if the

actual (nonlinear) interactive dynamics are differentiable and deviations from the lin-

earization operating point are small. The proximity of the zero-force trajectory to

the circular constraint path suggests that the linear approximation was reasonably

accurate. The time-invariant parameters were based on measurements made under

static postural conditions [Flash and Hogan, 1985, Mussa-Ivaldi et al., 1985]. The

slow speed condition was quasi-static – close to postural conditions. The elliptical

zero-force path seen in this condition was least sensitive to the assumption of time-

invariance. The analysis also assumed that stiffness and damping were symmetric,

proportional to each other, connected with a specific topology1, and that the same

values of stiffness and damping could be applied for all subjects. The assumptions of

symmetric stiffness and damping coefficients may be justified as this is sufficient to en-

sure a stable interaction [Colgate and Hogan, 1988]. Moreover, the study from which

we derived the stiffness parameters also reported a symmetric stiffness. The pro-

portionality between stiffness and damping implies first-order interactive dynamics,

consistent with experimental observations [Hill, 1938]. However, it also implies that

a single time-constant describes the interactive dynamics of all muscles contributing

to the overall mechanical impedance.

Given the uncertain and approximate nature of these assumptions, the regularity

of the pattern that emerged is striking. Unlike Gomi and Kawato’s [Gomi and Kawato,

1996] findings, our results estimated a zero-force trajectory close to the actual hand

path, consistent with the work of Won and Hogan [Won and Hogan, 1995]. In addi-

tion, the statistical reliability of our estimates is quite remarkable. It suggests that,

from macroscopic behavioral measurements, we can approximate at least some conse-

quences of the underlying neural processes, and that they are informative [Krakauer

et al., 2017].
1In this context, ‘topology’ refers to how the stiffness and damping are connected in the model.
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2.4.3 Speed Curvature Relation in the Zero-Force Trajectory

In a study of unconstrained two-joint upper-limb reaching Abend et al. [Abend et al.,

1982] reported that human hand trajectories exhibited a coincidence between cur-

vature maxima and speed minima-velocity decreased when the curvature increased.

When studied in explicitly elliptical trajectories, the speed-curvature relation was

described by a two-thirds power law [Lacquaniti et al., 1983], such that the relation

between instantaneous angular velocity, 𝐴(𝑡) and the curvature, 𝐶(𝑡) was expressed

as 𝐴(𝑡) = 𝐾𝐶𝐶(𝑡)2/3, where 𝐾𝐶 is a constant (the so-called velocity gain factor). The

law can also be written in terms of a one-third power law relating the instantaneous

tangential velocity, 𝑉 (𝑡) and the radius of curvature, 𝑅(𝑡) = 1/𝐶(𝑡), was expressed

as 𝑉 (𝑡) = 𝐾𝑅𝑅(𝑡)1/3, where 𝐾𝑅 is a constant. For this reason, it is often referred

to as the two-thirds or one-third power law, respectively. This power law was re-

ported for drawing ellipses and several other geometric figures (such as lemniscates);

however, the reason for this relation was not clear. Viviani and Terzuolo [Viviani

and Terzuolo, 1982] originally suggested it to result from central computational con-

straints which occur during the translation of movement trajectories into the appro-

priate motor parameters. However, others showed that this relationship might simply

emerge as a result of neuro-mechanics [Gribble and Ostry, 1996,Schaal and Sternad,

2001,Sternad and Schaal, 1999]. Using the lambda-equilibrium-point model, Gribble

and Ostry [Gribble and Ostry, 1996] generated an input command which did not

follow a curvature-velocity relation. Nevertheless, the simulated motion exhibited

a curvature-velocity relation. These authors also tested the alpha-equilibrium-point

model as simulated by Flash [Flash, 1987] and observed the same result. In other

work, Schaal and Sternad [Schaal and Sternad, 2001,Sternad and Schaal, 1999] showed

that a power-law relation between hand velocity and curvature relation emerges from

simple oscillatory joint motions in a 7-degree-of-freedom arm model. More impor-

tantly, this account predicted systematic deviations from a power-law relation for

large motions, which was confirmed by experimental observation.

Other observations across multiple tasks and extremities, as well as in the percep-
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tion of actions, provided evidence that the power-law relation is of non-mechanical,

i.e. neural origin [Dayan et al., 2007,Hicheur et al., 2005,Maurice et al., 2018a,Vi-

viani and Flash, 1995]. For example, Massey et al. [Massey et al., 1992] performed

an experiment where subjects grasped a 3D isometric force-sensing handle and ex-

erted forces continuously to draw circles, ellipses, and lemniscates on a screen, with

and without visual feedback. The power-law curvature-velocity relation was observed

even when the hand did not move, indicating that inertial dynamics alone could not

be its cause. Nevertheless, a later Gribble and Ostry study [Gribble and Ostry, 1996]

showed that biomechanics may account for a curvature-speed relation even during

isometric conditions. Other research has shown that movement production involves

the cooperative interaction of large neuronal populations [Georgopoulos et al., 1986].

Schwartz [Schwartz, 1994] used a population vector method to interpret one aspect

of neural activity as representing spatial motions. This information was then used to

visualize motor cortical representations of wrist trajectories which were remarkably

similar to the actual wrist motions made by monkeys as they drew spirals. Surpris-

ingly, a power law relating velocity and curvature was observed in this cortically-

derived representation of motion. Neuro-mechanics alone cannot account for these

observations.

A possible resolution of this controversy is that the neural controller and the

neuro-mechanical periphery co-evolved to embody similar dynamic structures and

constraints. Long communication delays are a core challenge of human motor con-

trol. Coping with these delays requires a controller that favors predictability, even

over energetic cost in some cases [Bazzi et al., 2018, Koeppen et al., 2017, Maurice

et al., 2018b,Sternad and Hasson, 2016]. Smoothness quantified by minimizing mean

squared jerk provides a measure of predictability and maximizing smoothness has

been shown to account for the coordination of simple reaching movements, including

an account for the two-thirds power law [Flash and Hogan, 1985, Schaal and Ster-

nad, 2001, Sternad and Schaal, 1999,Viviani and Flash, 1995]. More recent work by

Huh showed that maximizing smoothness along a curved path yields a spectrum of

power-law speed-curvature relations [Huh and Sejnowski, 2015].
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Periodic actions are (in principle) infinitely predictable and have been proposed as

one class of dynamic primitives used to construct motor behavior [Hogan, 2017,Hogan

and Sternad, 2012,Hogan and Sternad, 2013,Ronsse et al., 2009,de Rugy and Sternad,

2003,Schaal and Sternad, 1998,Sternad, 2008,Sternad et al., 2000]. An elliptical path

may be generated by combining two sinusoids of the same frequency at a non-zero

relative phase, though possibly of different amplitudes. The resulting trajectory (i.e.

time-course of speed along the elliptical path) necessarily exhibits a power-law relation

between velocity and curvature. Generating an elliptical zero-force trajectory via out-

of-phase sinusoids is consistent with our observations. The same model (a zero-force

trajectory composed of simple dynamic primitive oscillations) may account for the

observations of Massey et al. [Massey et al., 1992] and possibly those of Schwartz

[Schwartz, 1994]. Perhaps more important, it is also consistent with prioritizing

predictability over other aspects of performance, including the variability of actual

hand speed and exerted normal force.

2.5 Conclusion

Unconstrained curved movements exhibit a systematic relation between speed and

curvature. This has been attributed to either neural or mechanical causes, without

resolution of the debate. To obtain a new perspective on this open question, this

study examined movements against a simple kinematic constraint. By design, the

experiment confined the hand to a circular path with constant curvature; speed was

controlled by instruction with visual feedback. If control is focused on hand trajec-

tories, there should be no reason for a systematic variation of speed as curvature was

constant. Nevertheless, systematic fluctuations of speed and normal force were ob-

served at all speeds, unaffected by the presence or absence of visual feedback. When

the influence of peripheral neuro-mechanics was subtracted based on a biomechan-

ical model to identify a zero-force trajectory, the widely-observed relation between

speed and curvature extrema re-emerged: Extrema of curvature and tangential speed

were systematically time-aligned. This relation persisted even when the stiffness and
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damping parameters of the model were varied over a wide range. These findings

provide evidence that the speed-curvature relation is due, at least in part, to neural

processes, possibly reflecting their co-evolution with peripheral dynamic structures.

These results are also a first demonstration that the zero-force trajectory may suc-

cessfully dis-entangle neural and biomechanical factors underlying motor actions.
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Chapter 3

Dynamic Primitives in Constrained

Action: Systematic Changes in the

Zero-Force Trajectory

This is an adapted version of a paper to be submitted to the Journal of Neurophys-

iology. Furthermore, a conference paper presented at BioRob 2020 [Hermus et al.,

2020] covers a portion of the content presented herein.

3.1 Introduction

Previously, a method which estimated the zero-force trajectory was proposed. It

was applied to the task of turning a planar crank. A model of limb impedance

was assumed, and the zero-force trajectory was computed. The zero-force trajectory

showed evidence of the speed-curvature relation reported in unconstrained motion

[Hermus et al., 2020] suggesting that our approach reveals information about neural

control. However, structure beyond that of the speed-curvature relation was also

evident in those data. The work reported here presents further investigation of the

zero-force trajectory in the task of crank turning.
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3.1.1 Motivation for the Experiments

If dynamic primitives control physical interaction, quantifiable limitations may be ev-

ident in human performance, from which dynamic primitives may be inferred. Prior

work showed that humans adjust their behavior to prioritize predictability [Bazzi

et al., 2018,Maurice et al., 2018b,Nasseroleslami et al., 2014,Nayeem et al., 2021,Ster-

nad, 2017]. Arguably, the most predictable action is periodic; in theory, strictly pe-

riodic actions are infinitely predictable. Negotiating a circular constraint at constant

speed requires periodic hand motion in each degree of freedom. For these reasons, we

anticipated that crank-turning might preferentially be executed as a combination of

oscillatory actions.

Two non-collinear sinusoids of the same period but different amplitude and phase

describe an ellipse. This system can produce a subset of the so-called Lissajous

plots. Our previous study on circular crank turning revealed zero-force trajectories

with a roughly elliptical shape [Hermus et al., 2020]. Constant-speed circular hand

motion requires sinusoidal motion in orthogonal directions with a phase offset of

±90∘ depending on the direction of motion. However, the motions evoked by neural

oscillations would lag those neural oscillations to an extent determined by the dynamic

behavior of the neuro-mechanical periphery. This motivated Hypothesis 1: The

zero-force trajectory will describe a roughly-elliptical path with different orientations

for CW and CCW rotations.

Despite the predictability of the actions required to turn a crank, imperfect ex-

ecution may be anticipated due to sensory noise, motor noise, and/or inadequate

prediction of inertial dynamics and neuro-muscular response. The consequences of

these imperfections should decline (precipitously) with decreasing speed: all inertial

forces decline with the square of speed; velocity-dependent muscle dynamics decline

in proportion to speed; motor noise declines in proportion to speed; and slower speed

allows ample time for feedback corrections. However, rhythmic actions with periods

longer than 2 to 5 seconds are neither perceived nor executed as periodic (Fraisse

1984; James 1890). Previous research has shown that slower movements, even if pe-
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riodic, ‘break down’ into a sequence of stereotyped submovements [Park et al., 2017],

another class of dynamic primitives. Consequently, despite the dynamic advantages

of moving slowly (reduced influence of dynamic complexities, more time for feedback

corrections), we anticipated that performance would be compromised during slow

movements. This motivated Hypothesis 2: Variability of hand speed will increase

in the slowest movements.

3.2 Methods

The participants, experimental apparatus, procedure, and computation of the zero-

force trajectory were the same as described in Chapter 2 [Hermus et al., 2020].

3.2.1 Dependent Measures

Orientation of Zero-force Trajectory

In our prior work, the zero-force trajectory could be approximated by an ellipse.

To quantify the orientation of an ellipse, the choice of coordinates required care.

Two potential candidates are shown in Figure 3-1. Orientation and eccentricity were

intuitively understandable, but they were not always numerically well-behaved. The

major axis angle was not defined for an eccentricity of unity and, for eccentricities

near unity, the major axis angle was expected to have a nearly flat distribution. To

address this concern we used log-ratio coordinates. Though less intuitive (see Figure

3-2), they have numerical properties better suited to statistical analysis [Fasse et al.,

2000,Fasse and Hogan, 1996].
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Orientation and Eccentricity Log-Ratio Coordinates

𝜃𝑎, 𝜖 = 𝑙𝑎/𝑙𝑏
ln(𝑟0) = ln(𝑙𝑥/𝑙𝑦)

ln(𝑟45) = ln(𝑙𝑥′/𝑙𝑦′)

Figure 3-1: Two possible sets of coordinates: (left) Ellipse eccentricity and major axis
angle; (right) log-ratio coordinates. The major axis is poorly defined when eccentricity
approaches unity. Log-ratio coordinates alleviate this problem.

Figure 3-2: Graphical illustration of how the log-ratio coordinates change as the
ellipse varied.

For each subject in each speed and direction condition the zero-force trajectory

was binned into 200 angular position bins. The average radial position for each bin

was computed. This polar representation was used to estimate the lengths 𝑙𝑥, 𝑙𝑦, 𝑙′𝑥,

𝑙′𝑦 at zero degrees and 45 degrees, respectively. For each subject and each condition
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ln(𝑟0) and ln(𝑟45) were estimated. To decrease the dimensionality of the statistical

analysis, principal component analysis (PCA) was performed to identify coordinates

which explained the most variance (see Figure 3-6). In order to test Hypothesis 1, this

principal component, ln(𝑟)𝑃𝐶 , served as a dependent measure for statistical analysis.

Variability of Hand Speed

To quantify the variability of hand speed the crank velocity data from all trials within

a speed and direction condition were binned into 200 position bins. In each bin the

coefficient of variation (CV) was computed (standard deviation divided by the mean).

Then the average of this CV across bins served as the second dependent measure for

statistical analysis.

3.2.2 Statistical Analysis

To quantify the influence of speed and direction, a linear mixed model was employed;

it was then tested using analysis of variance (ANOVA). The linear model which

represented the observed dependent measure 𝑌𝑖,𝑗,𝑘 was expressed as

𝑌𝑖,𝑗,𝑘 = 𝜇𝑇 + 𝛼𝑗 + 𝛽𝑘 + 𝛾𝑙 + (𝛼𝛽)𝑗,𝑘 + (𝛼𝛾)𝑗,𝑙 + (𝛽𝛾)𝑘,𝑙 + (𝛼𝛽𝛾)𝑗,𝑘,𝑙 + 𝐸𝑖,(𝑗,𝑘,𝑙) (3.1)

where the grand mean is 𝜇𝑇 , the fixed effect of speed is 𝛼𝑗, where 𝑗 is an index from

1 to 3, the fixed effect of direction is 𝛽𝑘, where 𝑘 is an index from 1 to 2, the random

effect of subject is 𝛾𝑙, where 𝑙 is an index from 1 to 10. For the first dependent

measure, ln(𝑟)𝑃𝐶 , the stochastic sampling effect is 𝐸𝑖,(𝑗,𝑘,𝑙), where i is an index from 1

to 22 (representing the number of trials excluding the first and the 7 catch trials). For

the second dependent measure, the CV of speed, the index 𝑖 was 1. This was because

computing the CV over bins ignored individual trials. The significance level was set

to 5% for all statistical tests. Paired-sample t-tests were carried out to interpret the

results of the ANOVA.
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3.2.3 Sensitivity to Impedance Assumptions

To the best of our knowledge, two-joint limb impedance measurements during physical

interaction with a constraint have not been reported. Thus, impedance parameters

were based on unconstrained static arm stiffness and single joint damping measure-

ments. Consequently, the impedance parameters, the gain term for the stiffness, 𝐺,

and the proportional damping term, 𝛽, were varied to test whether the results were

sensitive to the impedance values used to compute the zero-force trajectory. When the

gain and damping terms changed, the zero-force trajectory was expected to change.

However, the main question was whether the dependent measures were robust to the

changes in the stiffness and damping. To this end, the ln(𝑟)𝑃𝐶 was computed when

the 𝐺 and 𝛽 terms were each varied over a 3:1 range.

3.3 Results

3.3.1 Variation of Force and Motion

Despite instructions and the availability of visual feedback, speed fluctuated, display-

ing a systematic pattern with respect to crank angle. At the same time, non-zero force

normal to the constraint was observed, again displaying a systematic pattern with

respect to crank angle. To explore the possible cause of these patterns, we combined

these observations by computing zero-force trajectories (see Figure 3-3).
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Figure 3-3: Mean and SDs of speed (blue dashed line) and normal force (green dashed
line) versus crank angle for all subjects. The shading indicates 1 SD from the mean.
Data are from the clockwise direction trials. Systematic fluctuations in speed and
force were observed with respect to crank position. Note the different scales on the
ordinates.

3.3.2 Zero-Force Trajectory Orientation

A zero-force trajectory from one representative subject in each direction and speed

condition is presented in Figure 3-4. To provide a sense of the data across all subjects,

the average ZFT for each subject binned by position, in each direction and speed

condition, is presented in Figure 3-5. From these two figures it is clear that (1)

the path shapes were approximately elliptical; (2) there was a consistent pattern of

speed fluctuations with position along the path; and (3) the shapes displayed a clear

difference of orientation between the two directions.
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Figure 3-4: One representative trial from one subject in each of the slow, medium,
and fast speed conditions. Left: slow speed; middle: medium speed; right: fast
speed. Top: clockwise direction trials; bottom: counter-clockwise direction trials.
The path defined by the constraint is shown by the black dashed circle. The zero-
force trajectories are shown by lines with varying color that indicates speed along the
zero-force path (normalized by its range). Importantly, the zero-force trajectory is
roughly elliptical and its orientation differs with direction.
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Figure 3-5: The average ZFT binned over angular position for each of the 10 subjects
in the, slow, medium, and fast speed conditions. Left: slow speed; middle: medium
speed; right: fast speed. Top: clockwise direction trials; bottom: counter-clockwise
direction trials. The path defined by the constraint is shown by the black dashed
circle. The zero-force trajectories are shown by lines with varying color that indicates
speed along the zero-force path (normalized by its range).

The ellipse parameters in log-ratio coordinates are presented in Figure 3-6. Despite

the variability of the data, the difference between CW and CCW directions is visually

evident. Statistically, the mean ln(𝑟)𝑃𝐶 in the CW conditions were 0.098±0.12 (slow),

0.23±0.15 (medium) and 0.58±0.07 (fast). The mean ln(𝑟)𝑃𝐶 in the CCW conditions

were −0.21± 0.16 (slow), −0.27± 0.19 (medium) and −0.45± 0.09 (fast).
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Figure 3-6: Distribution of ellipse parameters in log-ratio space. The black dashed
line represents the direction of the first principal component. The CW direction is
represented by blue, and the CCW direction is represented by red. Lighter shades
indicate slower speeds and darker shades indicate faster speeds. The crosses represent
plus or minus one standard deviation from the mean across subjects. (bottom left)
Distribution of dependent measure ln(𝑟)𝑃𝐶 . Note the clear difference between the
CW and CCW directions. (bottom right) Distribution of the dependent measure
ln(𝑟)𝑃𝐶 with CCW data reflected.

A significant interaction between speed and direction (𝐹2.0,18.0 = 106.388, 𝑃 <<

0.001) together with a main effect of speed (𝐹2.0,9.0 = 6.062, 𝑝 = 0.006), and direction

(𝐹1.0,9.0 = 212.879, 𝑃 << 0.001), were detected. For each speed post-hoc pairwise t-

tests were run between the CW and CCW directions. A significant difference between

directions was observed in all three cases: slow (𝑃 << 0.001), medium (𝑃 << 0.001),
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and fast (𝑃 << 0.001).

To clarify the effect of direction, the CCW data were reflected along the ln(𝑟)𝑃𝐶 .

The result is displayed in the lower right panel of Figure 3-6. For comparison, the

original (un-reflected) data are displayed in the lower left panel. After reflection, a

significant main effect of speed (𝐹2.0,9.0 = 106.388, 𝑃 << 0.001), and a significant

interaction between speed and direction (𝐹2.0,18.0 = 6.0622, 𝑃 = 0.006) were still

detected. However, this action, reflecting the CCW about the ln(𝑟0) and ln(𝑟45)

axes, removed the main effect of direction.

3.3.3 Orientation – Sensitivity Analysis

The zero-force trajectory is a construct derived from our experimental observations

based on several assumptions combined with parameter values from the published

literature. To assess the sensitivity of this construct to the assumptions used to

compute it, key parameters of the model were varied over a 3:1 range. A linear

time-invariant first-order model of mechanical impedance was assumed, with damping

proportional to the assumed stiffness. Values for the gain term 𝐺 were [0.25, 0.50,

0.75] (slow and medium), and [0.75, 1.50, 2.25] (fast); values of the proportionality

constant 𝛽 were [0.025 s, 0.05 s, 0.075 s] (slow and medium), and [0.05 s, 0.1 s, 0.15

s] (fast). We anticipated that, if the impedance was varied, the zero-force trajectory

would change, and it did. Nevertheless, the differences in ellipse orientation between

conditions remained when the impedance parameters were varied (see Figure 3-7).

Hence, the zero-force trajectory orientation was not sensitive to the particular values

of stiffness and damping; the observed results were robust.
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Figure 3-7: Distribution of dependent measure ln(𝑟)𝑃𝐶 when the impedance param-
eters were varied over a 3:1 range. Error bars indicate the standard deviation (SD)
between subjects. Lighter shades indicate lower stiffness and damping and darker
shades indicate higher stiffness and damping.

3.3.4 Hand Speed Coefficient of Variation

The CV of hand speed is presented in Figure 3-8. There was a substantial increase

in hand speed CV at slow speeds. Statistically, the mean CV in the CW conditions

were 0.26± 0.06 (slow), 0.13± 0.02 (medium) and 0.11± 0.03 (fast). The mean CV

in the CCW conditions were 0.28± 0.06 (slow), 0.16± 0.02 (medium) and 0.11± 0.02

(fast).

A significant main effect of speed (𝐹2.0,9.0 = 116.076, 𝑃 << 0.001), direction

(𝐹1.0,9.0 = 5.755, 𝑃 = 0.014), and an interaction between speed and direction (𝐹2.0,18.0 =

3.489, 𝑃 = 0.038) were detected. Note that, consistent with visual inspection of Fig-

ure 7, the effect of direction and the interaction, though significant, were weaker than

the influence of speed. For each direction, post-hoc pairwise t-tests were run between

adjacent speeds. A significant difference was detected between the slow and medium

speed for CW (𝑃 << 0.001) and CCW (𝑃 << 0.001) motion. A significant differ-

ence was also detected between medium and fast speeds CW (𝑃 = 0.003) and CCW
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(𝑃 << 0.001).

A significant interaction between speed and direction (𝐹2.0,18.0 = 3.489, 𝑃 = 0.038)

together with a main effect of speed (𝐹2.0,9.0 = 116.076, 𝑃 << 0.001), and direction

(𝐹1.0,9.0 = 5.755, 𝑃 = 0.014), were detected. Note that, consistent with visual inspec-

tion of Figure 3-2, the effect of direction and the interaction, though significant, were

weaker than the influence of speed. For each direction, post-hoc pairwise t-tests were

run between adjacent speeds. A significant difference was detected between the slow

and medium speed for both CW (𝑃 << 0.001) and CCW (𝑃 << 0.001) directions.

A significant difference was also detected between medium and fast speeds in the CW

(𝑃 = 0.003) and CCW directions (𝑃 << 0.001).
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Figure 3-8: Coefficient of variation (CV) of hand speed. Error bars indicate the
standard deviations between subjects. Blue lines indicate the clockwise trials (CW),
red lines indicate the counter-clockwise trials (CCW).

3.4 Discussion

Kinematically constrained motion presents an intermediate step between the widely-

studied unconstrained motions, such as reaching and pointing, and the sparsely-

studied physical interaction with dynamically complex objects. Several works have
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investigated crank turning from a variety of perspectives including early descriptive

studies (Russell and Hogan 1989), optimal control studies with muscle level model-

ing [Davoudabadi Farahani et al., 2016,Ohta et al., 1998,Ohta et al., 2004,Svinin et al.,

2001,Zheng and Wang, 2017], studies that reported minimizing muscular effort [Koep-

pen et al., 2017], studies that summarized muscle behavior as an impedance [Hermus

et al., 2020, Hermus et al., 2020], as well as studies in robotics [Kazanzides et al.,

1989,Williamson, 2003].

To understand the interaction with a kinematic constraint our approach was to

estimate an underlying zero-force trajectory. The zero-force trajectory is a construct

based on measured force and motion, combined in a model of peripheral neuro-

mechanics. It allows to ‘peel back’ the peripheral neuro-mechanics to uncover one

consequence of the underlying neural commands; that consequence is expressed in

terms of motion. The zero-force trajectory is similar to, but distinct from, the virtual

trajectory of the equilibrium-point hypothesis [Bizzi et al., 1982,Feldman, 1966,Feld-

man, 1986]. The virtual trajectory was postulated to be encoded in neural commands

descending from the higher central nervous system to the periphery. The forward-path

dynamics between neural input and actual motion is, in general, quite different from

the interactive dynamics (mechanical impedance) used to construct the zero-force tra-

jectory. Because of neural transmission delays, excitation-contraction coupling and

other dynamic effects in the forward path, the zero-force trajectory may differ sub-

stantially from the virtual trajectory [Gribble et al., 1998]. The zero-force trajectory

is an objective observation defined by measurements of hand force and motion com-

bined with an estimate of interactive dynamics. While it is a consequence of neural

activity, it remains unknown whether this quantity is represented in higher-level activ-

ity of the central nervous system. An unconstrained trajectory is also a consequence

of neural activity, but an observed trajectory is not sufficient to determine how neural

activity controls or encodes this action. Nevertheless, observations of actual motion

have proven to be informative. The zero-force trajectory is a way to interpret mea-

sured force and motion, in combination with a reasonable, albeit simplified, model of

peripheral neuro-mechanics. As with actual unconstrained trajectories, observations
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of the zero-force trajectory are informative.

3.4.1 Zero-force Trajectory Orientation

This study revealed a statistically significant difference in orientation of the zero-force

trajectory between the CW and the CCW conditions – consistent with Hypothesis

1. We anticipated that turning a crank might be executed using oscillatory primi-

tives. Constant-speed circular hand motion requires sinusoidal motion in orthogonal

directions with a phase offset of ±90° (depending on direction, CW vs. CCW). How-

ever, the oscillatory zero-force trajectory required to produce this motion would lead

hand motion by an extent determined by the slow dynamic response of the neuro-

mechanical periphery interacting with the inertia of the skeleton. That lead in time

would manifest as a lead in phase that differed in opposite turning directions, and

that would result in different performance in CW and CCW crank turning, just as

we observed.

Consider a zero-force trajectory with two orthogonal components, 𝑥0 and 𝑦0, con-

structed from two out-of-phase sinusoids with the same frequency, Ω, same magnitude,

and a phase difference, 𝜑. ⎧⎪⎨⎪⎩𝑥0 = sin (Ω𝑡)

𝑦0 = sin (Ω𝑡+ 𝜑)

(3.2)

A perfect circle can be drawn in the CW or CCW direction with a phase difference of

±90∘ (see Figure 3-9). However, slow peripheral neuro-muscular dynamics interacting

with skeletal inertia would require the zero-force trajectory to move ahead of the

actual trajectory, contributing an additional phase difference. Moreover, because of

the anisotropy of skeletal inertia and neuro-muscular impedance, the magnitudes of

the two sinusoidal components of the zero-force trajectory would differ. This would

result in zero-force trajectories with an elliptical shape that is oriented differently for

CW and CCW motion—just as we observed. The medium and fast speed behavior

strongly supports control using oscillatory primitives.
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Figure 3-9: Trajectories resulting from out of phase sinusoids. To draw a perfect
circle ±90∘ of phase is required depending on direction CW or CCW. However, the
limb dynamics add phase, thus zero-force trajectories in the III and II quadrants are
observed for the CW and CCW directions respectively. *This figure is replicated
from [Al-Khazali and Askari, 2012].

3.4.2 Variability of Hand Speed

In our experiment, the coefficient of variation of hand speed was largely similar be-

tween the fast and medium speeds (both with periods no longer than 2 sec), but

increased dramatically at the slowest speed (period of 13.3 sec) – consistent with

Hypothesis 2 and providing evidence of primitive submovements.

For more than 100 years researchers have documented movement intermittency,

the inability to move smoothly and continuously, during slow cyclical movements

[Crossman and Goodeve, 1983, Doeringer and Hogan, 1998b]; saccadic eye move-

ments [Collewijn et al., 1988]; and slow discrete movements [Hogan et al., 1999,Park
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et al., 2017,Vallbo and Wessberg, 1993,van der Wel et al., 2009,Woodworth, 1899]. In

addition, studies with stroke patients during rehabilitation have documented ‘frag-

mented’ movements composed of highly stereotyped submovements [Krebs et al.,

1999,Rohrer et al., 2004]. This is vastly different from normal human reaching move-

ments, which are usually quite smooth and follow a minimum-jerk trajectory (Flash

and Hogan 1985).

An oscillation could, in theory, be a composite of opposite-direction submove-

ments. However, physiological evidence indicates that this is not the case [Brown

and Sherrington, 1911, Brown, 1914, Grillner and Wallen, 1985, Schaal et al., 2004].

A well-documented observation in human psychology and motor control is that when

the period of a rhythmic action is longer than 2 to 5 seconds it can no longer be

perceived nor executed as periodic [Fraisse, 1984, James, 1890]. Slower movements,

even if periodic, ‘break down’ into a sequence of stereotyped submovements (Park et

al. 2017). These submovements may have limitations, e.g. amplitude, duration, and

a minimum ‘refractory period’ – time between initiation of adjacent submovements.

Production of constant speed motion, with intermittent control, would require sub-

movements to overlap [Loram et al., 2014,Markkula et al., 2018]. As movement slows,

the refractory period and minimum submovement duration make constant motion im-

possible and individual submovement peaks appear. This causes greater variability

at slow speeds – a quantifiable limitation of human behavior that may account for

our observations.

3.4.3 Limitations of this Study

The zero-force trajectory is an estimate based on a large number of assumptions. It

assumes a model of neuro-muscular dynamics that is (1) time-invariant; (2) first-order;

and (3) linear. All of these assumptions are demonstrably incorrect, but they serve as

a first workable approximation. The analysis also assumes that stiffness and damping

are (1) connected with a specific topology; (2) symmetric; (3) proportional and (4)

that the same values of stiffness and damping may be applied to all subjects. Given

the highly approximate nature of these assumptions, the regularity of the pattern
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that emerged is striking. Unlike [Gomi and Kawato, 1996] showed for a reaching

movement, the path of the zero-force trajectory that emerged in this study is ‘close’

to the actual hand path. In particular, the effect of turning direction was observed

even when the parameters scaling the magnitude 𝐺 and relative size 𝛽 of stiffness and

damping were each varied over a 3:1 range.

While our observations are consistent with control based on a composition of un-

derlying oscillations and submovements, we cannot rule out alternative explanations.

Moreover, while we refer to these as dynamic primitives, we provide no direct evidence

of their dynamic nature. However, a robust oscillation in the presence of sensory and

motor noise implies that it is a stable attractor of a nonlinear dynamic system (a limit

cycle); and the stereotypy reported for submovement speed profiles suggests that they

are transient responses of dynamic systems, also nonlinear as submovements have fi-

nite duration. A zero-force trajectory composed of oscillations and/or submovements

provides a parsimonious, even elegant, account of our observations—substantially

nonzero normal force even though it contributes no mechanical work; and patterns of

force and velocity error that are clear with respect to configuration but not time.

3.4.4 Implications

While our results support a role for dynamic primitives in the production of kinemat-

ically constrained motions, they also present a puzzle. Slow speed behavior cannot

be executed by oscillatory dynamic primitives, yet it exhibited a feature easily ex-

plained by oscillatory primitives at medium and fast speeds—direction dependence.

The slowest speed, 13.33 seconds per revolution was quasi-static by any reasonable

definition of the term [Hermus et al., 2020]. In that case, all inertial effects were

negligible, as were any delays in the neuro-muscular dynamics. What might account

for the observed direction dependence at the slowest speed? One possibility is that

the CNS develops some form of geometric representation of the behavior and uses

it to generate a nominal slow-speed zero-force trajectory that serves as a target for

feedback correction. Combined with an error threshold below which no action is

taken, this may result in intermittent control, manifest as a sequence of submove-
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ments and resulting in an elevated coefficient of variation of hand speed [Markkula

et al., 2018,Park et al., 2017]. The validity of these speculations is a topic for future

study.

3.5 Conclusions

This study examined kinematically constrained motion as an intermediate step to

bridge the gap between (widely-studied) unconstrained motions and (sparsely-studied)

physical interaction with dynamically complex objects. We investigated the detailed

patterns of motion and force that human subjects exhibited when performing a simple

constrained-motion task, turning a circular crank. Turning the crank in both CW

and CCW directions and at slow, medium, and fast speeds exposed several ’artifacts’

that could not result from mechanics alone. We speculate that they may arise from

underlying dynamic primitives.

The zero-force trajectory displayed clear differences in orientation when turning

in different directions. This is consistent with control using oscillatory primitives to

generate an elliptical zero-force trajectory. The difference in orientation with direc-

tion was observed even at the slowest speed. However, when the oscillation period

became longer than 2 to 5 seconds, motion can no longer be perceived or executed

as periodic. Instead, it “breaks down” into a sequence of submovements, and that

results in increased variability, which we observed at the slowest speeds. This rein-

forces previous evidence [Park et al., 2017] of a transition from smoothly rhythmic to

intermittent control as actions slow.

Using dynamic primitives may allow humans to ‘work around’ the shortcomings of

their slow muscles and neural communication to perform complex physical interaction

tasks. However, the advantages of this approach imply concomitant disadvantages.

An elliptical zero-force trajectory that does not coincide with the circular constraint

results in non-zero normal force applied to the crank [Hermus et al., 2020]. This was

observed even at the slowest speed when dynamic effects were negligible and there was

ample opportunity for feedback correction. This reinforces recent reports that human
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subjects interacting with a robot cannot suppress a dependence of interaction force

on motion, even with visual feedback and opportunity to practice and learn [Maurice

et al., 2018a,West et al., 2022]. These limitations are important to understand the

interaction between humans and the devices we develop, from complex robotic systems

to simple hand-held tools.
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Chapter 4

Estimating Impedance during

Constrained Motion – The

Configuration-Dependent Ensemble

In this Chapter, we set out to measure mechanical impedance during the task of

crank-turning. Initially, time-based ensemble methods were employed. However, a

key assumption–the stationarity of the noise processes–was not satisfied. A ‘work-

around’ was developed: (1) high-pass filter to remove the influence of the underlying

time-varying ZFT; (2) identify a configuration-dependent ensemble. The method

was tested in three ways: (1) simulation; (2) using a robot but simulating a model

of human behavior; (3) using a single human subject. Results demonstrated an

opportunity for further improvement but also uncovered a fundamental limitation

that may preclude usable estimation in some circumstances.

4.1 Introduction

In previous Chapters 2 and 3, a linear first-order time-invariant model of limb impedance

was assumed based on static postural measurements [Mussa-Ivaldi et al., 1985]. In

practice, however, impedance varies as a function of many factors including: mus-

cle activation [Cannon and Zahalak, 1982], movement [Bennett et al., 1992], activity
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preparation [Lacquaniti et al., 1993], force exertion level [Perreault et al., 2001], task

stabilization [Burdet et al., 2001], limb configuration [Trumbower et al., 2009], and

walking gait state [Lee et al., 2016, Lee and Hogan, 2015]. Direct measurement of

impedance may provide insight which could clarify or falsify portions of the pro-

posed dynamic primitive hypothesis. This led to the following research question: is

it possible to measure impedance directly in the crank-turning task?

An experimental paradigm was developed where a human subject turned a vir-

tual crank simulated by a robot. The goal of this experiment was to perturb human

behavior, measure the response, and estimate the interactive dynamics of the limb.

When estimating limb dynamics, perturbation-based system identification methods

fall into two categories: (1) Estimate impedance directly – apply position displace-

ments and measure the resulting forces; (2) Estimate admittance directly – apply

force perturbations and measure the resulting position. After estimating admittance

directly, invert admittance to estimate impedance. There is a vast literature which

has applied both methods to estimate impedance in a variety of conditions – a ma-

jority of which has studied a static case or a single joint. A review of the literature

prior to 1990 was presented by Kearney and Hunter [Kearney and Hunter, 1990].

While perturbation-free approaches exist [Hodgson and Hogan, 2000,Lee et al., 2021]

perturbation-free methods require assumptions about the forward-path or interactive

dynamics which are difficult to justify in a crank-turning paradigm.

One of the primary reasons for studying human limb impedance is to better under-

stand the awesome feats of stable manipulation humans achieve every day. Activities

of daily living frequently involve significant physical interaction – simultaneous mo-

tion and force production. Considering that over 30 years has passed since Kearney

and Hunter’s review, surprisingly little research has been performed which estimates

limb impedance during physical interaction. In order to investigate one such task, we

used a robot to simulate a compliant constraint. An impedance controller rendered

the constraint while force perturbations were super imposed – consistent with case 2.

Originally, an ensemble method [MacNeil et al., 1992, Lortie and Kearney, 2001,

Perreault et al., 1999] was applied to estimate the time-varying impedance of the limb.
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This approach worked well when tested in simulation. However, it failed when applied

to human crank-turning data. It appeared that important aspects of the human data

were missing from the simulations used to generate the testing data. Time-varying

ensemble methods assume that a time-dependent impulse response function relates

the inputs to the outputs. However, in the previous experiments, presented in Chapter

2 and 3, humans did not turn the crank with a constant period, even when instructed

to move at a constant speed and provided with velocity feedback (see Figure 4-1 and

4-5).

Instead, substantial position drift was observed, even when velocity feedback was

provided. Experimentally, variations in crank position after one period (crank rev-

olution) could be as large as plus or minus 1/3𝑟𝑑 of a crank revolution (See Figure

4-1). Variation in crank position on this scale is problematic. Geometric changes in

limb configuration would result in considerable error in impedance estimation simply

due to the change in inertia.

This drift does not appear to be an artifact, but is a feature of the human motor

controller. As a ‘sanity check’ a separate experiment was performed to determine

if drift was present in a static posture task. The drift was observed during static

posture as well, even when visual position feedback was provided (See Appendix C).
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Figure 4-1: A representative subject’s crank position with respect to time. The black
line represents the target speed. The varying color lines represent different trials.
The left column corresponds to clockwise rotation. The right column corresponds
to counter-clockwise rotation. The slow, medium, and fast speeds correspond to the
top to bottom rows respectively. Note that the time axes were chosen to cover one
revolution. Thus, for each row the duration displayed is different. A substantial drift
is observed relative to the zero crank position after only one revolution.

4.1.1 Brownian Noise

This drift was found to be well-described by Brownian noise. Brownian motion is

the random motion of particles suspended in a medium (e.g. a liquid or gas) [Brown,

1828]. This motion is named after the botanist Robert Brown, who first described the

phenomenon in 1827, while looking through a microscope at pollen of the plant Clarkia
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pulchella immersed in water. In 1905, Einstein [Einstein, 1905] studied Brownian

motion and showed that the mean squared displacement of a one dimensional random

walk was related to the time interval Δ𝑡 by the expression

Δ𝑥2 = 2𝐷Δ𝑡 (4.1)

where 𝐷 is a diffusion coefficient. In this case the diffusion coefficient is an average

measure of the stochastic activity of the random walker. This served as the first

evidence that atoms and molecules exist. This type of behavior is also often referred

to as a Wiener process, in honor of Norbert Wiener who later rigorously derived the

Einstein observation. A historical review of this research was presented by Nelson

[Nelson, 1967].

Given a random white noise process 𝑋𝑤(𝑡), such that its spectral density function

𝑆𝑋𝑤(𝑓) = 𝑘𝑏 where 𝑘𝑏 is a constant for all frequencies 𝑓 , Brownian noise can be

obtained by integration of the white noise process

𝑋𝑏(𝑡) =

∫︁ ∞

0

𝑋𝑤(𝜏)𝑑𝜏. (4.2)

This is demonstrated in Figure 4-2. Brownian noise has a power spectral density

characterized by,

𝑆𝑋𝑏
(𝑓) =

𝑘𝑏
𝑓 2

(4.3)

For this reason, Brownian noise has a power spectrum with a slope of exactly -20

dB/dec. Without knowledge of the process value at some initial time 𝑥(𝑡𝑜), the non-

stationary behavior of a Brownian process makes estimating the first central moment

difficult. The study of processes with poorly-defined first central moments (or even

all moments) has been the subject of a substantial amount of work applying statis-

tical mechanics to study neurophysiological systems [Tuckwell, 1989,Holden, 2013].

Unfortunately, to the author’s knowledge, many of these methods are developed for

gradient-based first order systems. The extension of these ideas to second-order or

higher dynamics requires care.
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Figure 4-2: (top) Four instances of a white noise process, and (bottom) four instances
of a Brownian noise process are presented. Each 𝑟𝑡ℎ replication of the Brownian noise
process was produced by integrating the corresponding replication of the white noise
process.

4.1.2 Evidence of Brownian Noise during Crank-Turning

In order to quantify the presence of Brownian noise during the task of crank-turning

the experimental data presented in Chapter 2 and 3 were further analyzed.

Methods

The crank angle error was defined as the 𝜃𝑒𝑟𝑟𝑜𝑟 = 𝜃𝑐 − 𝜃𝑡𝑎𝑟𝑔𝑒𝑡, where 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 is the

displacement that would have been observed if subjects moved with the instructed

constant speed (slow 0.075 rev/sec, medium 0.5 rev/sec, and fast 2 rev/sec). The

power spectrum of the error in crank angle was estimated using 21 hamming windows.

These windows corresponded to the 21 trials of the experiment. The length of the

windows was chosen to be as long as possible, given a starting crank angle of 0 rad

(the 3 o’clock position). In practice, this allowed for a slow (16.8 s), medium (9.3 s),

and fast (1.9 s) window length.
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Results

The presence of temporal drift was visually evident in the human crank angle and

angle error (see Figure 4-1 and 4-3). The power spectrum of crank angle error dis-

played a -20 dB/dec slope over the entire frequency range for which the spectra could

be estimated. This observation was robust to both speed and direction.

Figure 4-3: A representative subject’s position error with respect to time (𝜃𝑒𝑟𝑟𝑜𝑟 =
𝜃𝑐 − 𝜃𝑡𝑎𝑟𝑔𝑒𝑡). The differently colored lines represent different trials. The black line
represents the zero error case. The left column corresponds to clockwise rotation and
the right column corresponds to counter clockwise rotation. The slow, medium, and
fast speeds correspond to the top to bottom rows respectively.
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Figure 4-4: Power spectral estimates of the crank error for the (left) CW and (right)
CCW turning directions. The mean is the average over subjects, and the error bars
represent plus or minus one standard deviation from the mean. Note the clear -2
mag/dec slope in all 6 spectral estimates.

4.1.3 System Identification in the Presence of Brownian Noise

Processes which drift are non-stationary. Rather than an inclusive categorization,

non-stationarity is defined as the lack of stationarity. Analogous to nonlinearity, there

are many underlying structures in data which can result in a violation of stationarity.

For this reason, there is no single well-defined method to deal with this class of

problems. In practice, two common approaches to deal with violations of stationarity

which will be relevant to this work are: leveraging multiple replications (assuming

an ensemble) or temporally averaging within a replication to estimate the underlying

moments (local stationarity).

In the prior analysis, the key to dealing with the time varying nature of 𝑥0(𝑡)

and 𝑍(𝑡) was to enforce a specific assumption that the noise influencing the estimate

at a particular time, 𝑡, did not drift. However, the Brownian motion present in the

crank-turning data resulted in drift. In the experimental human crank data, a specific

time index may occur at substantially different configurations from one cycle to the

next (if the time index is reset at the start of each crank cycle). Interestingly, the

raw velocity and force data exhibited systematic fluctuations with respect to crank

position – suggesting a solution (see Figure 4-5).
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Figure 4-5: Plot of a representative subject’s data from the crank-turning studies pre-
sented in Chapter 2 and 3. Blue lines represent multiple crank cycles in the clockwise
direction. Red lines represent multiple cycles in the counter-clockwise directions. Ve-
locity and normal force are presented with respect to time and configuration variable
𝜃 (crank angle). Qualitatively there is little to no pattern in the velocity or normal
force with respect to time. However, clear systematic patterns are present with re-
spect to the configuration variable.

The Brownian motion present in the crank-turning data results in drift. In the

experimental human crank data, a specific time index from one cycle to the next may

occur at substantially different configurations.

We observed that structured variations were more evident with respect to con-

figuration than time. In the following method we propose to differentiate the non-

stationary position measurement. If a process is Brownian, the derivative of the pro-

cess is white noise with zero mean and constant variance – stationary by definition.

(see Figure 4-2). However, a task with constant speed motion in the desired degree of

freedom cannot have a zero mean velocity. This was the case in the crank-turning ex-

periment. Before differentiation, high-pass filtering the position measurement allowed

for the steady-state velocity to be removed.
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4.1.4 Configuration-Dependent Ensemble Method

The standard ensemble method for time-varying system identification was altered in

two ways: (1) the position measurement was high-pass filtered, and (2) a configuration-

dependent ensemble index was used. The high-pass filter removed the influence of

the underlying time-varying ZFT while the configuration-dependent ensemble avoided

artifacts resulting from temporal drift. These alterations required additional assump-

tions:

• The information required to estimate impedance is present in the frequency

range above that of the high-pass filter.

• The apparently random fluctuations in the zero-force trajectory can be de-

scribed as a Brownian noise process.

• The time-variation of impedance arises exclusively from the configuration-dependence

of impedance.

• The human zero-force trajectory is smooth and differentiable.

In theory, given these assumptions, the influence of a zero-force trajectory corrupted

by Brownian noise can be removed, leaving only the influence of the configuration-

dependent mechanical impedance. Further discussion of the fundamental assumptions

of this work, presentation of prior ensemble methods, and simulations using ensemble

methods are presented in Appendix B.

Assume 𝑅 replications of a configuration-dependent process such that each repli-

cation has a variable number of time samples 𝑁𝑟. In this case, 𝑙 is the index of discrete

uniformly-spaced time steps ranging from 0 to 𝑁𝑟. In the following definitions, the

subscript 𝑟 notation indicates that a variable is a function of replication. Assume

it is possible to measure or separately estimate the configuration variable 𝜃𝑟(𝑙), an

input 𝑢𝑟(𝑙), and noisy measurement of the output 𝑧𝑟(𝑙) while the noiseless output

measurement 𝑥𝑟(𝑙) is not directly measurable. Given 𝑁 evenly-spaced configuration

bins 𝜃𝑏𝑖𝑛(𝑖) between 0 to 2𝜋 the 𝑖𝑡ℎ configuration bin of an ensemble can be defined
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as

𝛾(𝑖)
𝑟 = argmin

𝑙∈[1,𝑁𝑟]

|𝜃𝑟(𝑙)− 𝜃𝑏𝑖𝑛(𝑖)|. (4.4)

Switching the relation around yields 𝜃𝑏𝑖𝑛(𝑖) = 𝜃𝑟
(︀
𝛾
(𝑖)
𝑟

)︀
. Provided these indices an

𝑁 -dimensional configuration-dependent subset is defined for each replication. In this

case, 𝛾
(𝑖)
𝑟 is the index of the 𝑧𝑟

(︀
𝛾
(𝑖)
𝑟

)︀
which provides the value of the noisy ensem-

ble measurement closest to the 𝑖𝑡ℎ crank position bin. This concept is graphically

displayed in Figure 4-6.

Figure 4-6: The variable 𝛾
(𝑖)
𝑟 is the time index of the 𝑟𝑡ℎ replication closest to a the

𝑖𝑡ℎ crank position bin (𝜃𝑏𝑖𝑛(𝑖)). The red, blue, and yellow sample records represent
different exemplary replications of crank angle sampled in time. The horizontal black
dotted line represents the crank position 𝜃𝑏𝑖𝑛(𝑖). The vertical dotted lines are the time
positions for each of the three replications which are closest to the 𝑖𝑡ℎ crank position
bin.

𝑧𝑟(𝛾
(𝑖)
𝑟 ) = Δ𝑡

𝑀∑︁
𝑗=0

ℎ̂(𝛾(𝑖)
𝑟 , 𝑗)𝑢𝑟(𝛾

(𝑖)
𝑟 − 𝑗) (4.5)

where ℎ̂(𝛾
(𝑖)
𝑟 , 𝑗) is an impulse response function (IRF) estimate with finite lag length

𝑀 + 1, where 𝑗 is a lag index. This assumes ℎ̂(𝛾
(𝑖)
𝑟 , 𝑗) = 0 for 𝑗 > 𝑀 , which is true

for causal systems. The Wiener-Hopf equation can be obtained by multiplying both
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sides of Equation 4.5 with 𝑢𝑟(𝛾
(𝑖)
𝑟 − 𝑗) and summing over all realizations

1

𝑅

𝑅∑︁
𝑟=1

𝑧𝑟(𝛾
(𝑖)
𝑟 )𝑢𝑟(𝛾

(𝑖)
𝑟 − 𝑘) = Δ𝑡

𝑀∑︁
𝑗=0

ℎ̂(𝛾(𝑖)
𝑟 , 𝑗)

1

𝑅

𝑅∑︁
𝑟=1

𝑢𝑟(𝛾
(𝑖)
𝑟 − 𝑗)𝑢𝑟(𝛾

(𝑖)
𝑟 − 𝑘). (4.6)

Given the input auto-correlation

𝜑𝑢𝑢(𝑖, 𝜏) =
1

𝑅

𝑅∑︁
𝑟=1

𝑢𝑟

(︁
𝛾(𝑖)
𝑟

)︁
𝑢𝑟

(︁
𝛾(𝑖)
𝑟 + 𝜏

)︁
(4.7)

and the input-output cross-correlation

𝜑𝑧𝑢(𝑖, 𝜏) =
1

𝑅

𝑅∑︁
𝑟=1

𝑧𝑟

(︁
𝛾(𝑖)
𝑟

)︁
𝑢𝑟

(︁
𝛾(𝑖)
𝑟 + 𝜏

)︁
, (4.8)

substituting Equation 4.7 and Equation 4.8 into Equation 4.6 yields,

𝜑𝑧𝑢(𝑖,−𝑘) = Δ𝑡
𝑀∑︁
𝑗=0

ℎ̂(𝛾(𝑖)
𝑟 , 𝑗).𝜑𝑢𝑢(𝑖− 𝑘, 𝑘 − 𝑗) (4.9)
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Time-dependent random process Configuration-dependent process

𝜑𝑧𝑧(𝑙, 𝜏) =
1
𝑅

𝑅∑︀
𝑟=1

𝑧𝑟(𝑙)𝑧𝑟(𝑙 + 𝜏) 𝜑𝑧𝑧(𝑖, 𝜏) =
1
𝑅

𝑅∑︀
𝑟=1

𝑧𝑟

(︁
𝛾
(𝑖)
𝑟

)︁
𝑧𝑟

(︁
𝛾
(𝑖)
𝑟 + 𝜏

)︁

Figure 4-7: (left) An ensemble of a time-dependent process. (right) An ensemble of a configuration-dependent process. The red,
blue, and yellow sample records represent different exemplary replications sampled in time. Note, in both cases the variance
changes as a function of time. In the configuration-dependent case, the variance change is not temporally aligned across
ensembles. Leveraging knowledge of the configuration, 𝛾(𝑖)

𝑟 , allows for the cross-correlation to be computed. Note, 𝑙 ∈ Z is
the time 𝑡 index that corresponds to uniform steps in time, where 𝑙 ∈ [1, 𝑁𝑙] while 𝑖 ∈ Z is the configuration 𝜃𝑐 index that
corresponds to uniform steps in configuration, where 𝑖 ∈ [1, 𝑁 ].
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A matrix expression can be constructed by changing the lag index 𝑗 and 𝑘 from 0

to 𝑀 , where Φ̂𝑢𝑢(𝑖) ∈ R𝐿×𝐿 and Φ̂𝑧𝑢(𝑖) ∈ R𝐿×1. In this case the IRF estimate, ℎ̂(𝑖),

can be computed using a Moore-Penrose pseudo-inverse matrix operation.

Φ̂𝑧𝑢(𝑖) = Δ𝑡Φ̂𝑢𝑢(𝑖)ℎ̂(𝑖) (4.10)

ℎ̂(𝑖) = Δ𝑡Φ̂𝑢𝑢(𝑖)
−1Φ̂𝑧𝑢(𝑖) (4.11)

4.2 Methods

4.2.1 Participants

A single-subject pilot experiment was performed to test this configuration-dependent

ensemble method. One healthy male subject (age 30) was recruited for the study.

The participant was right-handed, and did not report any biomechanical injury to

their arm nor any neurological problems. Prior to participating in the study, he was

informed about the experimental procedure and signed an informed consent document

approved by MIT’s Institutional Review Board.

4.2.2 Experimental Apparatus and Procedure

This experimental design is similar to that of Chapter 2 and 3. All experiments were

performed with an InMotion2 Shoulder-Elbow robot (Interactive Motion Technolo-

gies Inc.). The InMotion is a highly back-drivable torque controlled 𝑥 − 𝑦 planar

robot, which was designed for stroke rehabilitation and human motion research. The

custom control system for the InMotion robot was implemented on a CompactRIO

9034 controller, with low-level functionality implemented at 2 kHz on a CompactRIO

FPGA, and high-level functionality implemented at 350 Hz on a CompactRIO real-

time processor. InMotion joint positions were measured by a 16-bit/rev encoder and

interaction forces were measured at the end-effector of the InMotion robot using an

ATI Gamma force/torque transducer [Hogan et al., 1995,Thorup, 2018].
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During the experiment, the subject’s arm was occluded from view by a wooden

structure, which did not limit the range of motion. The upper arm was suspended by

a canvas sling connected to the ceiling using a steel cable; the upper and lower arm

moved in a horizontal 𝑥 − 𝑦 plane. Anatomically this corresponded to a transverse

plane. The subject sat in a chair with a rigid back, while the shoulder was constrained

by a harness attached to the back of the chair. The subject was positioned such that

the virtual crank, with radius 10 cm, was well within the work-space of the arm. The

visual display, also generated by the computer, was on a 38 cm monitor mounted

approximately 75 cm from the subjects’ eyes. The experimental setup is displayed in

Figure 4-8.

Figure 4-8: Experimental setup. The InMotion2 simulated a virtual circular con-
straint. Vision of the arm and robot were occluded. The subject was provided with
visual speed feedback. The wrist was braced, the elbow was supported by a sling,
and the shoulders were strapped to a chair.
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The experiment comprised three 15-minute constant-target-speed turning trials.

Each trial began by initializing the robot, zeroing the force transducer, and instruct-

ing the subject to grasp the handle. Perturbations imposed by the robot began 10

seconds after the robot was initialized. The subject was instructed to begin turning

in the counter-clockwise direction after the force perturbations started. The sub-

ject was instructed to match the line representing their tangential velocity to the

constant-target-speed line in the visual display. Achieving this goal would corre-

spond to moving with a constant period of 13.33 seconds per revolution. In practice,

the subject completed approximately 65-70 revolutions per trial. In all conditions

the robot control was the same, simulating a virtual constraint and applying small

force perturbations in the normal and tangential directions. The subject was given a

three-minute break between each of the three trials.

4.2.3 Robot Control

The control of the robot was separated into the normal and tangential direction of

the virtual constraint. In the normal direction, the stiffness was 1500 N/m and the

damping was 40 Ns/m while in the tangential direction the stiffness was zero and

the damping was 5 Ns/m. A random square-wave force perturbation was applied in

each of the normal (-1.5 N and 1.5 N) and tangential (-0.5 N and 0.5 N) directions.

The power spectrum of the force perturbation was flat up to 20 Hz (See Figure 4-10

upper left). Preliminary experiments were performed to determine the amplitude of

the perturbations. These experiments are presented in Appendix E.

4.2.4 Robot-only

The robot-only experiment was conducted in order to estimate the impedance of the

robot without the human interacting with it. Without the human exerting forces on

the handle, an additional control term was required. A virtual human stiffness of 500

N/m was added in the tangential direction. Stiffness was not added in the normal

direction as the dynamics of the virtual crank confined the system in this degree of
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freedom. The virtual stiffness was connected to a nominal position 𝑥0 which moved

around the constraint with constant speed. This speed achieved the task goal exactly,

moving the manipulandum with a period of 13.33 seconds.

4.2.5 Simulations

A simulation experiment was also performed. A model of a human was based on

the previous crank-turning experiments presented in Chapters 2 and 3. This ideal

data set allowed potential problems due to hardware to be separated from the system

identification implementation. This also served as a way to test whether the system

ID methods worked properly. The human was modeled as a two-link manipulator

interacting with a circular constraint. The human inertial parameters were the same

as in the previous work (see Appendix A). The system was simulated in human

joint-space coordinates by numerically integrating the expression to solve for �̇� and

𝑞.

𝑀 (𝑞)𝑞 = 𝜏 + 𝐽𝑇 (𝐹𝑝𝑟𝑒𝑡 + 𝐹𝑐)−𝐶(𝑞, �̇�) (4.12)

The term 𝑀 (𝑞) was the mass matrix and 𝐶(𝑞, �̇�) was the Coriolis and centrifugal

terms for the entire linkage system including the human and InMotion robot. The

inertial parameters of the InMotion robot are presented in Appendix D. The forward

kinematic map from joint-space to hand space was denoted 𝐿 and the inverse kine-

matic map from hand space to joint-space was denoted 𝐿−1. The torque resulting

from the constant joint impedance was defined as

𝜏 = 𝐾𝑞(𝐿
−1(𝑥0)− 𝑞) +𝐵𝑞(𝐽

−1�̇�0 − �̇�). (4.13)

The joint-space stiffness was constant and the damping was proportional to the stiff-

ness (𝐵𝑞 = 0.05𝐾𝑞). The stiffness in units of N-m/rad was defined as

𝐾 = 𝐺

⎡⎣ 𝐾11 𝐾12

𝐾21 𝐾22

⎤⎦ = 𝐺

⎡⎣ 29.5 14.3

14.3 39.3

⎤⎦ (4.14)
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where 𝐺 was equal to 0.5. This choice of impedance is consistent with Chapters 2

and 3. The zero-force trajectory, 𝑞0, was defined in hand space and transformed to

joint-space coordinates. In hand space it was assumed to be composed of two out-of-

phase sinusoids with the same amplitude 𝐴 of 0.1 m, frequency Ω equal to the turning

frequency 2𝜋(0.075) rad/s, and with a phase offset.

𝑥0 =

⎡⎣𝐴 sin(Ω(𝑡+ 𝑤𝑏) + 𝜑1)

𝐴 sin(Ω(𝑡+ 𝑤𝑏) + 𝜑2))

⎤⎦ (4.15)

The phase in the 𝑥 direction 𝜑1 was −1.49𝜋, and the phase in the y direction 𝜑2

was 2𝜋. This zero-force trajectory produced qualitatively similar velocity and force

fluctuations to those observed previously in Chapter 2. Phase drift was produced

through the addition of a Brownian noise term 𝑤𝑏. The Brownian noise was generated

by integrating normally-distributed pseudo-random noise scaled by 2.5 × 10−2 and

low-pass filtering with a 4𝑡ℎ order Butterworth filter with a cuttoff frequency of 2

Hz. These parameters were selected such that the crank angle drift and the power

spectrum were comparable to that of the human subject.
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Figure 4-9: Diagram of the system model used for simulation

A pseudo-random perturbation with a magnitude of 1N or -1N was denoted 𝐹𝑝𝑒𝑟𝑡.

The force exerted by the circular constraint was denoted 𝐹𝑐. The perturbations were

applied in the normal 𝑒𝑛 and tangential 𝑒𝑒 directions. Consistent with the robot

experiment, the normal stiffness of the constraint was 1500 N/m and the damping

was 40 Ns/m while a 5 Ns/m damping was applied in the tangential direction.

The simulations were performed at 200 Hz. Seven crank-turning cycles (slow

speed 13.33 seconds per revolution) were simulated. The first cycle was discarded.

This was repeated to generate 300 crank cycles of data from which to perform system

identification.

The rotation matrix as a function of crank angle 𝜃 transformed the Cartesian

coordinates with unit vectors 𝑒𝑥 and 𝑒𝑦 to the normal and tangential coordinates

with unit vectors 𝑒𝑛 and 𝑒𝑒. This notation is displayed graphically in Figure 4-9.

This transformation was denoted

𝑅(𝜃) = [𝑒𝑛, 𝑒𝑒] =

⎡⎣ cos(𝜃) sin(𝜃)

− sin(𝜃) cos(𝜃)

⎤⎦ . (4.16)
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4.2.6 Data Processing

The data were re-sampled uniformly in time with a sampling frequency of 200 Hz for

𝑅 replications. A replication corresponded to a single crank cycle. In practice, the

number of time samples 𝑁𝑟 in a replication varied. The configuration variable was

defined as crank angle 𝜃𝑟(𝑙). The system input was the commanded force perturbation

in the normal 𝑢𝑛
𝑟 or tangential 𝑢𝑒

𝑟 directions. The measured position was denoted 𝑧𝑛𝑟

in the normal and 𝑧𝑒𝑟 in the tangential direction. The position measurement was high-

pass filtered with a cut-off frequency of 0.1 Hz. The binned configuration variable

𝜃𝑏𝑖𝑛 was defined with 𝑁 = 300 bins evenly spaced from 0 to 2𝜋 rad. The perturbation

applied at the handle caused small high-frequency deviations in crank angle. In the

computation of 𝛾(𝑖)
𝑟 the crank angle position was low-pass filtered with a 4𝑡ℎ order

Butterworth filter, cut-off frequency of 0.1 Hz.

The configuration-based ensemble method was applied in the normal and tan-

gential directions. Clearly the real systems have coupling. However, in practice the

coupling terms have a low stiffness. Without inertial compensation, this results in

extremely noisy estimates of the coupling terms. This noise is so substantial that the

matrix inversion as a MIMO problem resulted in poor estimates even on the diagonal

terms. Thus, in the following analysis, the behavior in the normal and tangential

directions were processed separately. In the normal direction the drift was small. For

this reason the additional step of differentiating the input and output position to deal

with the Brownian noise was unnecessary and only increased noise. In the normal

direction the IRF was estimated directly from equation 4.11. The presence of drift

in the tangential direction was substantial. For this reason the input and output

were differentiated. Differentiation amplifies noise, and for this reason the tangential

estimates were low-pass filtered before differentiation with a 4𝑡ℎ order Butterworth

filter with a cut-off frequency of 30 Hz. After this filtering the equation used to solve

for ℎ̂𝑒(𝑖) was

ℎ̂𝑒(𝑖) = Δ𝑡
(︁
Φ̂�̇�𝑒�̇�𝑒(𝑖)

)︁−1

Φ̂�̇�𝑒�̇�𝑒(𝑖) (4.17)

The estimated IRFs were filtered in both arguments – lag and configuration. In
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the configuration direction, a moving-average filter with a window width of 15 bins

was applied. In the lag direction a 4𝑡ℎ order Butterworth filter with a frequency

of 15 Hz was applied to the normal estimates while a 4𝑡ℎ order Butterworth filter

with a frequency of 7 Hz was applied to the tangential estimates. A different cut-off

frequency was used for the normal and tangential directions because the underlying

dynamics to be identified had a different natural frequency.

For each time step 𝑖, the best fit second-order impulse response function (ℎ𝑚𝑜𝑑𝑒𝑙(𝑖))

was fit by minimizing the mean squared error between ℎ̂(𝑖) and the model using

a bound-constrained optimization. This model is described by parameters (�̂�(𝑖),

�̂�(𝑖), 𝑘(𝑖)). To quantify the model fit the %𝑉 𝐴𝐹𝐼𝑅𝐹 between ℎ̂(𝑖) and ℎ𝑚𝑜𝑑𝑒𝑙(𝑖) was

assessed.

%𝑉 𝐴𝐹𝐼𝑅𝐹 (𝑟) = 100×

(︃
1−

var
(︁
ℎ̂(𝑖)− ℎ𝑚𝑜𝑑𝑒𝑙(𝑖)

)︁
var
(︁
ℎ̂(𝑖)

)︁ )︃
(4.18)

To quantify the error in the parameter estimates, the average percent error between

the expected and estimated values were computed for the robot-only and the simula-

tion experiments.

The kinematic stiffness term was neglected during this analysis. The kinematic

stiffness term results from 𝜕𝐽
𝜕𝑞
𝐹 . The term 𝜕𝐽

𝜕𝑞
was less than 1 in the works-space

occupied by the virtual crank. In addition, the forces observed in simulation and in

the experiments were less than 5N. Thus, the magnitude of the kinematic stiffness

term in this experiment was smaller than 5 N/m – smaller than the resolution of our

measurements.

4.3 Results

The results from two experiments and one simulation study are presented. First, the

robot-only experiment with the InMotion robot; then, a human interacting with the

InMotion robot; finally, simulations of a robot coupled to a human.
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4.3.1 Robot

In order to estimate the impedance of the robot independent of the human subject,

trials were collected where the robot turned with a ‘virtual’ human stiffness in the

tangential direction. The results are presented in Figure 4-10 and 4-11.

It is clear from the plot of crank position vs. time (Figure 4-10 upper right) that

the InMotion turned with a constant period without evidence of Brownian noise.

Consistent with this observation, the power spectra of the input and output signals

have a slope of zero at low frequencies.

The estimates of mass and damping (Figure 4-11) were compared to the expected

inertial dynamics of the robot, the commanded damping of 40 Ns/m in the normal

direction, and the commanded damping of 5 Ns/m in the tangential direction. Devia-

tion from the dashed black lines is artifact, presumably due to the system ID method

or hardware limitations. These estimates resulted in an average mass error of 8.0%

in the normal and 6.9% in the tangential direction, a damping error of 11.4% in the

normal and 17.0% in the tangential direction, and a stiffness error of 17.6% in the

normal and 7.0% in the tangential direction. The estimated stiffness was consistently

larger than the programmed 1500 N/m stiffness in the normal direction.
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Figure 4-10: (top left) Force perturbations from four seconds of a single replication in
the normal direction. (top right) The measured configuration 𝜃𝑟 with respect to time.
Note that there is no drift in the robot control. Each 𝑟𝑡ℎ realization was a different
color line. Note it appears that there is only one line because the realizations lie on
top of one another. (lower left) Normal 𝑛 and tangential 𝑒 displacements after high-
pass filtering. (lower right) Power spectra for the force perturbations and measured
displacements in both the normal and tangential directions.
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Figure 4-11: (top row) The blue lines represent the IRF estimates and the black
lines represent the best-fit second-order model. (lower rows) Blue lines represent
the parameter estimates from the best-fit model. The dashed black lines represent
the expected inertia, damping, and stiffness. The left column contains the results
from the normal direction. The right column contains the results from the tangential
direction.

4.3.2 Robot and Human

The results from the subject interacting with the virtual crank are presented in Figure

4-12 and 4-13. In this case, the drift present in the human subject data is clearly
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evident in the crank angle vs. time plot (upper left of Figure 4-12) in addition to

the -20 dB/dec slope present in the power spectrum of the tangential direction (lower

right of Figure 4-12).

In Figure 4-12 the red lines represent estimates from experimental data. In con-

trast, the black dashed lines provide insight as to what would be expected from the

model assumed in Chapter 2 and 3. The approximate inertia of the combined hu-

man and robot system was computed and plotted for reference (black dashed line

of Figure 4-13). In addition, a reference damping and stiffness were plotted. These

lines represent the stiffness and damping which result from the superposition of (1)

the programmed robot impedance and (2) a model of human impedance. The model

of human impedance was assumed to result from a constant joint-space impedance

which was the same as that used in the simulations (presented in the next section).
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Figure 4-12: Raw measures from the experiment where the subject interacted with
the robot. (top left) Force perturbations from four seconds of a single replication
in the normal direction. (top right) The measured configuration 𝜃𝑟 with respect to
time. Note the substantial drift. Each 𝑟𝑡ℎ realization was a different color line. (lower
left) Normal 𝑛 and tangential 𝑒 displacements after high-pass filtering. (lower right)
Power spectrum for the force perturbations and measured displacements in both the
normal and tangential directions.
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Figure 4-13: (top row) The red lines represent the IRF estimates. (lower rows) Red
lines represent the parameter estimates from the best-fit model. The dashed black
lines represent the inertia, damping, and stiffness used in the simulations. The left
column contains the results from the normal direction. The right column contains
the results from the tangential direction.

4.3.3 Simulations

Simulations were developed to validate the algorithm independent of the robotic hard-

ware. Constant joint-space stiffness consistent with the previous work was assumed

and a zero-force trajectory with Brownian noise was generated. A substantial amount

119



of drift, produced by the addition of Brownian noise, was present in the simulations.

This drift is visible in the crank angle vs. time plot (upper right of Figure 4-14) and

the power spectrum of the tangential direction (lower right of Figure 4-14)

In Figure 4-15 the IRF estimates in the normal direction are well described by

a second-order model and the parameters closely match those of the expected iner-

tia, stiffness, and damping, while the tangential direction presented more variability.

These estimates resulted in an average: mass error of 2.2% in the normal and 28.3%

in the tangential direction, a damping error of 3.1% in the normal and 39.5% in the

tangential direction, and a stiffness error of 2.4% in the normal and 39.1% in the

tangential direction.

Figure 4-14: (top left) Force perturbations from four seconds of a single replication
in the normal direction. (top right) The measured configuration 𝜃𝑟 with respect to
time. The drift was chosen to be comparable to the human experiments. Each 𝑟𝑡ℎ re-
alization is a different color line. (lower left) Normal 𝑛 and tangential 𝑒 displacements
after high-pass filtering. (lower right) Power spectra for the force perturbations and
measured displacements in both the normal and tangential directions.
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Figure 4-15: (top row) The green lines represent the IRF estimates and the black
lines represent the best-fit second-order model. (lower rows) Green lines represent
the parameter estimates from the best-fit model. The dashed black lines represent
the expected inertia, damping, and stiffness. The left column contains the results from
the normal direction and the right column contains the results from the tangential
direction.

In Figure 4-16, the overlayed IRFs from the simulated case and the combined

human and robot case demonstrate the amplitude difference. Especially in the tan-

gential direction, these errors are substantial and suggest a hardware problem.
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Figure 4-16: Overlaid IRF estimates for the simulations displayed in green and the
combined human and robot displayed in red. (left) Results from the normal direction
and the (right) the tangential direction.

4.4 Discussion

This experiment tested the configuration-dependent ensemble method in simulation

and on hardware. This led to several insights. (1) The configuration-based ensemble

method, was able to estimate impedance in the normal direction with a error of less

than 5% in simulation and 20% in the robot-only experiment. (2) A fundamental

limitation was discovered in practice: impedance may be so low that the natural

frequency of interactive dynamics at any one configuration may overlap the frequency

content of the non-stationary noise process present in the zero-force trajectory.

Variable-impedance actuators are fundamentally nonlinear. A general nonlin-

ear actuator model from equivalent circuit theory, the Norton-type network in the

impedance operational form, allows for the separation of forward-path dynamics (𝑥0)

from interactive dynamics (𝑍{·}) [Hogan, 2014]. Likewise, the Norton-type network,

is competent to describe the human arm in tasks which involve interaction. It as-

sumes the system has a well-defined zero and the zero-dynamics of the impedance

operator are stable.

Furthermore, there are two especially notable properties of a Norton-type network

in the impedance operational form: (1) The network is invariant to any change of the
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reference frame which does not change the identity of the ‘interactive’ and ‘forward-

path’ dynamics (2) If a task can be developed where zero interaction force is observed,

the motion source is unambiguously identifiable. This suggests a solution alternative

to estimating impedance directly. Hodgson and Hogan [Hodgson and Hogan, 2000]

developed a method which achieved this goal in the study of human point-to-point

reaching. If the subject maintains the same 𝑥0 across conditions, a similar idea maybe

applied to the study of human crank-turning. This is an area of future work.

In the work presented herein we presented an approach with the goal of removing

the influence of the forward-path dynamics to allow the estimation of the interactive

dynamics. If successful, given an estimate of the interactive dynamics the forward-

path dynamics could then be computed – consistent with the method presented in

Chapter 2 and 3.

4.4.1 Configuration-Dependent Ensemble Method

The drift in crank angle during a single cycle was frequently as large as 1/3𝑟𝑑 of a

crank revolution. This could be replicated in the simulation by adding Brownian

noise to the forward-path, zero-force trajectory. The inertial dynamics of the system

are configuration-dependent. Drift on the order of 1/3𝑟𝑑 of a revolution would result

in artifactual time-dependent IRF estimates.

There were several reasons to suspect that modeling limb interactive dynamics as

a configuration-dependent quantity would be informative. Static postural estimates

of the upper limb [Mussa-Ivaldi et al., 1985] can be well-described by constant joint

stiffness. Constant joint stiffness results in a hand stiffness which changes with con-

figuration. Furthermore, Perreault et al. [Perreault et al., 2001] demonstrated that,

given a particular configuration and force level, the subjects’ hand impedance was

well-described by a constant endpoint impedance. In previous Chapters 2 and 3,

observations of unperturbed human crank-turning exhibited systematic patterns in

velocity and force with respect to crank angle – not with respect to time (see Fig-

ure 4-5). This motivated the development of the configuration-dependent ensemble

method.
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The configuration-based ensemble method resulted in an unbiased estimate of the

IRF given several assumptions. It assumed that human limb stiffness changes only

as a function of crank angle; that the behavior is smooth such that differentiation is

possible; that the zero-force trajectory can be described by a Brownian noise process;

and that frequency separation between the interactive dynamics and the forward-path

dynamics is possible.

4.4.2 InMotion Hysteresis

The increased errors in the impedance parameter estimates of the robot-only case, in

contrast to the simulation case, suggested that there may be an artifact in the InMo-

tion position measurement or force production. To address this concern a follow-up

experiment was performed. This experiment is presented in its entirety in Appendix

F. It revealed a force-production hysteresis of ∼0.5 N. The hysteresis was present

throughout the force range encompassed by the experiment. At the present time

it is unclear whether this hysteresis results solely from friction, the current control

amplifier, or another cause.

The virtual crank-turning experiment with force perturbations requires a robot

that can produce a feedforward force with a resolution far less than 0.5N. Given

that the perturbations used in the experiment were between ± 0.5-1.5N the observed

hysteresis could result in errors in force production on the order of 10-50%.

While the InMotion is not a new system [Hogan et al., 1995,Thorup, 2018], it is

direct-drive with low inertia. To our knowledge there is not another system of compa-

rable or better feedforward force rendering. The WAM (Barret Technology, Newton,

MA) is an example of another state-of-the-art mechanically back-drivable system due

to its clever cable-driven design. However, it has substantial friction and inertial dy-

namics in the force and frequency range required for the virtual crank experiment. On

the other side of the spectrum, the Kuka LBR iiwa [Schreiber et al., 2010] is a state-

of-the-art system in terms of electro-mechanical compensation for inertial dynamics.

However, the holonomic gear reduction mechanically amplifies actuator inertia. Even

with compensation, it is not possible to render highly back-drivable behavior in the
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range of parameters used for the virtual crank-turning experiment (e.g. stiffness of 0

N/m, a damping of 5 Ns/m, and an apparent inertia of 2-4 kg in the tangential di-

rection). At the present time, it is unclear whether 2D feedforward force production,

independent of motion, with a resolution in the 0.1 N range is achievable with an

existing robotic system.

4.4.3 Subtracting Robot Dynamics

Ideally, the ‘robot-only’ impedance estimates would be subtracted from the ‘robot

and human’ estimates to yield the ‘human-only’ impedance. The robot stiffness was

programmed to be 1500 N/m in the normal direction. A human stiffness in the range

of 20-500 N/m was anticipated. In the ‘robot and human’ case the human stiffness

comprised 1% - 25% of the stiffness. In this case, the observed variation of the robot-

only estimates of 20% are problematic. They could cause errors equal to or greater

than the anticipated human stiffness. In practice, when the ‘robot-only’ values were

subtracted from the ‘robot and human’ estimates, the ‘human-only’ estimate was

negative for a substantial number of configuration bins. This was not anticipated.

We suspect this error resulted from the hysteresis in the InMotion controller.

4.4.4 Frequency Separation

In the study of the motor cortex, the firing rate of neurons is modulated to control

action (e.g. muscle activation). The key for this control strategy to work is that, a

substantial separation exists between the frequency content of the neural firing rate

and the frequency at which the firing rate is modulated. In this case, there exists

a frequency range over which the observable behavior is locally stationary, and that

frequency range does not include the modulation frequencies associated with muscle

activation [Kandel et al., 2013].

In the virtual crank-turning experiments, the subject moved at a rate of approxi-

mately one crank revolution per 13.33 seconds. This was extremely slow, slow enough

to be considered quasi-static. A priori, it was not obvious that a similar frequency
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separation, comparable to that of neural firing rate, would not exist between the

interactive dynamics 𝑍{·} and forward-path dynamics 𝑥0.

The frequency content of Brownian noise increases as frequency decreases. Given

the presence of Brownian noise in the forward-path dynamics 𝑥0 the configuration-

based ensemble method requires a high-pass filter pre-processing step. The filter

cut-off frequency must be below the resonant frequency of the interactive dynamics.

The interactive dynamics of the arm have a low resonance frequency (∼ 0.5-2 Hz

in the work-space of the crank). The observed Brownian noise has substantial signal

power in this same frequency range. This makes disentangling forward and interactive

dynamics a challenge and may account for the problems with the configuration-based

ensemble method, when applied in the tangential direction. This challenge is consis-

tent with that observed in the power spectrum plotted in the lower right of Figure

4-12. In this figure the tangential displacement (red) approaches the amplitude of the

tangential perturbation (purple) at low frequencies.

One solution to this problem is to add an additional stabilizing impedance. This

added impedance could eliminate drift and increase the natural frequency. A higher

natural frequency would make frequency separation easier. This was the case in the

normal direction. In part this may be the reason that other studies have added

a stabilizing stiffness during impedance estimation [Lee and Hogan, 2015, Palazzolo

et al., 2007].

This suggest that looking at short-duration discrete tasks might avoid the drift

problem. The ball-catching work of Lacquaniti et al. [Lacquaniti et al., 1983], the

single-joint motion work of Bennet et al. [Bennett et al., 1992], and the point-to-point

reaching work of Burdett et al. [Burdet et al., 2001] investigated discrete tasks shorter

than 1.5 seconds. While continuous crank-turning makes it possible to collect the large

number of cycles required for the ensemble methods, in our experiment one crank cycle

took 13.33 seconds. With this duration the drift is substantial. Furthermore, even if

a cycle took less than 1.5 seconds, the crank turning was not discrete. Continuous

crank turning does not have a clear start and end of each cycle.
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4.5 Conclusions

In this chapter, a configuration-based ensemble method was presented and tested on

hardware and in simulation. The configuration-based ensemble method was able to

estimate impedance in the normal direction with an error of less than 5% in simulation

and 20% in a ‘robot-only’ experiment. However, hysteresis was observed in the robot

control. For this reason conclusions about human impedance could not be drawn. If

this error in control could be alleviated, the estimates in the robot-only case might be

improved. With an improvement in the robot-only estimate it may allow the robot-

only dynamics to be subtracted from that of the combined ‘human and robot’. This

process would yield an estimate of the human-only impedance during a continues

physical interaction task – one with substantial force and motion.

Furthermore, a key observation was the lack of frequency separation between

impedance and the zero-force trajectory. This lack of separation appears to have

clear structure, consistent with Brownian noise in the zero-force trajectory. The lack

of frequency separation poses a fundamental challenge to the identification of the

impedance in the tangential direction.

127



128



Chapter 5

Exploiting Redundancy to Facilitate

Physical Interaction

This chapter is an adapted version of [Hermus et al., 2022] published in IEEE Trans-

actions on Robotics. This work was done in collaboration with Johannes Lackner and

David Verdi.

5.1 Introduction

The human arm was one motivation for many of the recently developed seven-degree-

of-freedom robotic manipulators (e.g. Kuka LBR iiwa, ABB Yumi - IRB 14000,

Franka Emika, and Rethink Robotics Sawyer). They provide an additional kinematic

degree of freedom during the performance of any end-effector task. The work reported

in this paper investigated approaches to manage this redundancy, not only during free

motion but also in tasks which involve forceful physical interaction. Remarkably, we

found that with a sufficient excess of robot degrees of freedom over task degrees of

freedom, a superposition of simple impedances performed as well as more complex

null-space projection methods.
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5.1.1 Managing Redundancy

One way to approach the control of a robot with many degrees of freedom is to

express the desired robot behavior in the space of its end-effector actions1. This

representation is bounded by a maximum number of independent variables (𝑚 ≤ 6).

If the differential map 𝐽(𝑞) ∈ R𝑚×𝑛 (Jacobian) from configuration variables 𝑞 ∈ R𝑛 to

end-effector variables is known and the desired end-effector behavior can be expressed

as a force 𝑓 ∈ R𝑚, a unique map to joint torques 𝜏 ∈ R𝑛 will always exist:

𝜏 = 𝐽(𝑞)𝑇𝑓 . (5.1)

This is a beneficial feature of torque-controlled robots, since eq. (5.1) also holds for

kinematically redundant robots with 𝑛 > 𝑚.

Finding the end-effector forces 𝑓 that are balanced by a given set of joint torques

𝜏𝑓 ∈ R𝑛 represents an optimization problem that may be solved by a generalized

inverse of 𝐽(𝑞)𝑇 :

𝑓 =
(︀
𝐽(𝑞)𝑇

)︀#
𝜏𝑓 , (5.2)

If 𝑛 > 𝑚, a nullspace exists in
(︀
𝐽(𝑞)𝑇

)︀# ∈ R𝑚×𝑛. This means that the end-effector

forces can be balanced with infinitely many different joint torque solutions. The

kernel of the optimization is the weighting matrix 𝑊 ∈ R𝑛×𝑛:

𝐽(𝑞)# = 𝑊−1𝐽(𝑞)𝑇
(︀
𝐽(𝑞)𝑊−1𝐽(𝑞)𝑇

)︀−1
. (5.3)

Accordingly, 𝐽(𝑞)# yields a joint torque that minimizes the quadratic cost

𝑔(�̇�) =
1

2
�̇�𝑇𝑊�̇�. (5.4)

The projector in the nullspace of
(︀
𝐽(𝑞)𝑇

)︀# can be expressed by

𝑁𝜏 = 𝐼 − 𝐽(𝑞)𝑇
(︀
𝐽(𝑞)𝑇

)︀#
, (5.5)

1Also called task space or work space.
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where 𝑁𝜏 ∈ R𝑛×𝑛. All torques 𝜏any ∈ R𝑛 that are projected into this nullspace do

not interfere with end-effector forces of higher priority and can be used for additional

tasks [Antonelli et al., 2009,Dietrich et al., 2012,Dietrich et al., 2013, Siciliano and

Slotine, 1991], e.g. to avoid obstacles or joint limits:

𝜏 = 𝐽(𝑞)𝑇𝑓 +𝑁𝜏𝜏any. (5.6)

Note that 𝜏any can incorporate further projections in the nullspace of lower-priority

tasks. In this way arbitrarily many task levels can be produced with either the

successive [Dietrich et al., 2012] or augmented [Siciliano and Slotine, 1991, Sentis

and Khatib, 2005] methods. The lowest priority level is often chosen to be a joint

damper to avoid oscillations due to nullspace motions [Khatib, 1987]. The feasibility

of these task levels depends on the dimension of the nullspace, i.e. a one-dimensional

nullspace only allows projection of a one-dimensional task. Hence, theoretically, a

robot with 𝑛 >> 𝑚 degrees of freedom is capable of accomplishing multiple tasks,

without disturbing the main task.

The literature on redundancy resolution is predominantly concerned with nullspace

projection approaches [Liegeois, 1977, Oda et al., 1995, Oriolo, 1994, Albu-Schaffer

and Hirzinger, 2002, Albu-Schaffer et al., 2003, Ott, 2008, Ott et al., 2010, Peters

et al., 2008, Sentis and Khatib, 2005]. A general overview of nullspace projections

was presented in [Dietrich et al., 2015]. Implementations of hierarchical nullspace-

projection-based control have been applied to tasks which involve contact [Siciliano

and Slotine, 1991, Dietrich et al., 2012, Dietrich, 2016, Platt et al., 2011, Sadeghian

et al., 2012, Sadeghian et al., 2013, Sadeghian et al., 2014,Ficuciello et al., 2015,Lin

et al., 2015] and systems with multiple contact points [Park and Khatib, 2008,Diet-

rich et al., 2013,Henze et al., 2017]. Problems with instabilities have been discussed

in [Klein and Huang, 1983] and [Hollerbach and Ki Suh, 1987]. This led to the devel-

opment of conservative nullspace projection methods [Baillieul, 1985,Hu et al., 1995].

Stable nullspace projection methods have also been developed for mobile robot plat-

forms [Antonelli et al., 2005, Antonelli et al., 2006, Antonelli et al., 2008, Antonelli
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et al., 2009] and to cope with velocity actuator saturation [Arrichiello et al., 2010].

Energy tank methods have been applied to render nullspace projection methods pas-

sive [Dietrich et al., 2016,Dietrich et al., 2017].

Mechanical Impedance Superposition

While many approaches have been developed to ensure stability when nullspace pro-

jections are employed, neither the nullspace projector nor the stabilizing corrections

would be required if each controller were formulated as an energetically passive

impedance. A simple—even naive—solution to control the desired dynamic robot

behavior can be achieved by assigning a set of impedances, which can be visualized

as a spring-damper system [Hogan, 1984a,Hogan, 1985a,Hogan, 1985b,Hogan, 1985c].

These impedances can be applied in end-effector space and in joint-space. Even if

these impedances are non-linear, they can be superimposed:

𝜏 =
𝑘∑︁

𝑖=1

𝐽(𝑞)𝑇𝑖 𝑍{𝑥}𝑖 +
𝑙∑︁

𝑗=1

𝑍{𝑞}𝑗, (5.7)

with 𝑘 end-effector impedances 𝑍{𝑥}𝑖 : R𝑚 → R𝑚 and 𝑙 joint impedances 𝑍{𝑞}𝑗 :

R𝑛 → R𝑛. If each component impedance is passive, their sum is energetically pas-

sive, and since no inverse kinematics are needed, this approach works at kinematic

singularities.

If 𝑛 > 𝑚, the end-effector impedance does not control the nullspace of 𝐽(𝑞).

To achieve predictable joint motion, a full-rank set of joint-space impedances can

be assigned. These impedances push the robot toward a desired configuration 𝑞0.

However, the joint-space impedance may conflict with the end-effector impedance—

which is usually the task of interest—except in the rare cases when the end-effector

position corresponds to that configuration, 𝑞0. This may be the reason why nullspace

projection approaches have rarely [Verdi, 2019] been compared with impedance super-

position: in theory nullspace projection approaches should eliminate the end-effector

task error, while the simple superposition of impedance controllers may result in task

conflict. However, as we show below, due to imperfections in a robot’s kinematic and
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dynamic models, in practice nullspace projection may also cause task-space disrup-

tion.

One novel aspect of the work reported here is that it assessed task-space errors

due to implementing both approaches on hardware. For nullspace projections, we as-

signed different weighting matrices. The choice of nullspace weighting matrix has been

discussed in several contexts: to generate favorable kinematic behavior [Yoshikawa,

1985], to prioritize different motions [Whitney, 1969], to perform motion control with

joint constraints [Flacco et al., 2012,Flacco et al., 2015], and to ensure dynamic con-

sistency [Khatib, 1987]. In this work, we compare nullspace projection methods to

the superposition of mechanical impedance in both unconstrained motion and during

physical interaction with a constraint.

5.1.2 Factors that Influence Controller Design

To find an appropriate control approach for a given robot task, many factors should be

considered. Some factors are determined by the robotic system and the environment

with which it interacts. Another factor is the available information about the robot

model, i.e. kinematic and/or dynamic data. Lastly, the desired task may or may

not be achievable by the robot. We took several of these factors into account when

comparing nullspace projection methods with impedance superposition.

Environmental Factors

A robot is influenced by its own controller and the dynamics of the environment

which acts on it. Since it is impossible to have a perfect model (or in many cases

even a competent model) of the interacting environment [Stramigioli, 2001], most al-

gorithms solely concentrate on the robot’s controller. With an impedance controller,

a desired interactive dynamic behavior can be implemented (though perhaps imper-

fectly). To specify how well a robot performs its tasks both in and out of contact,

quantitative measures are required. In unconstrained motion, we assessed the dif-

ference between the desired and actual position and orientation. In tasks involving
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continuous physical interaction, the deviations between desired and actual forces were

used as a quantitative measure of controller performance.

Nullspace Dimension

Most industrial robots are serial kinematic chains with six degrees of freedom. Since

it is desirable to describe the robot task in end-effector space, these robots have

the benefit that the mapping between end-effector space and joint-space is bijective.

However, in practice many tasks require fewer degrees of freedom. For example,

consider a robot with a welding gun: rotation of the gun about its long axis has no

influence on task performance. Thus even a six-degree-of-freedom robot is redundant

with respect to some tasks. Of course, serial kinematic chain robots with seven

degrees of freedom or more always exhibit a nullspace, but the dimension of the

nullspace depends on the end-effector task. Nullspace projection methods can take

advantage of redundancy by assigning additional tasks in the nullspace of the main

task. In the work reported here, we investigated whether there could be advantages

to decreasing the task dimensions and thereby increasing the nullspace dimensions.

Weighting Matrix

Nullspace projection methods require a weighting matrix. This weighting matrix

defines the cost function minimized in the optimization, as seen in eq. (5.4). Even

though any positive definite matrix can be used, without a meaningful choice, physical

insight may be lost [Lachner et al., 2020]. A list of some possible options can be

seen in table 5.1. Two common choices are 𝑊 = 𝐼 and 𝑊 = 𝑀(𝑞). The former

yields the least-norm solution [Penrose, 1955] and the latter minimizes the kinetic

energy [Khatib, 1987,Bruyninckx and Khatib, 2000] produced by nullspace motion.

The dynamic consistency provided by the mass matrix is superior [Dietrich et al.,

2015,Chang and Khatib, 1995] especially when inertial dynamics are significant. In

theory, this is the only nullspace projector that does not produce accelerations that

interfere with the main task. Moreover, it is the only projector that does not inject

energy during nullspace motion and should therefore have superior stability properties
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[Bruyninckx and Khatib, 2000]. However, in practice, without a perfect model of the

mass matrix, other choices may be better [Dietrich et al., 2015,Albu-Schaffer et al.,

2003,Nakanishi et al., 2008, Peters et al., 2008]. Often when working with low-cost

robots, the mass matrix is not well known. In addition, poorly-modeled joint friction

and motor rotational inertia, amplified through a gear transmission, may dominate the

dynamic response of the robot [Hosford, 2016]. Yet another reasonable choice is 𝑊 =

𝐵𝑞. By using the joint-space damping matrix 𝐵𝑞 ∈ R𝑛×𝑛 the nullspace motion with

least energy dissipation is produced. The choice 𝑊 = 𝐾𝑞 produces the solution that

minimizes potential energy at equilibrium. We acknowledge that there are many other

weighting matrix choices not considered here, including [Yoshikawa, 1985,Whitney,

1969, Flacco et al., 2012, Flacco et al., 2015]. For notational convenience we also

define 𝑊−1 = 0 ∈ R𝑛×𝑛, a matrix with only zero entries. With this, the nullspace

projection matrix is equal to the identity matrix, corresponding to a superposition of

all task levels.

Inertial Dynamics

A robot’s performance is affected by its inertial dynamics. If the robot moves slowly

enough, inertial dynamics can be neglected and the task can be considered quasi-

static. At fast speeds, however, inertial dynamics, damping, and stiffness must all be

considered. The choice of task execution speed (slow/quasi-static vs. fast/dynamic)

was expected to have a substantial impact on task performance for certain choices of

nullspace projection weighting matrices.

Relative Impedance Magnitudes

Using impedance superposition, a large joint-space impedance will result in a sub-

stantial conflict with any end-effector task, while a smaller joint-space impedance will

evoke a lesser conflict. This prompted the question: if a small joint-space impedance,

sufficient to ‘manage the redundancy’2 is superimposed, how large will the task dis-
2This was defined operationally as an impedance as small as possible, but still capable of restoring

the robot to a position near its nominal configuration after a large null-space position disturbance.
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ruption be? When comparing mechanical impedance superposition and nullspace

projection methods, the magnitude of the joint-space stiffness was taken into account.

Table 5.1: Optimization criteria for nullspace projectors.

Weighting matrix Cost Description

𝑊−1 = 0 − Impedance Superposition

𝑊 = 𝐼 1
2
�̇�𝑇 �̇� Least Velocity Norm

𝑊 = 𝑀 (𝑞) 1
2
�̇�𝑇𝑀(𝑞)�̇� Least Kinetic Energy

𝑊 = 𝐵𝑞
1
2
�̇�𝑇𝐵𝑞�̇� Least Energy Dissipation

𝑊 = 𝐾𝑞
1
2
Δ𝑞𝑇𝐾𝑞Δ𝑞 Least Potential Energy

5.1.3 Summary

The principal aim of this study was to quantify and compare the performance of

mechanical impedance superposition and nullspace projection methods to manage

redundancy on real hardware in practice. Quantitative assessment was performed

during both unconstrained and constrained motion. A secondary aim was to un-

derstand and quantify how the dimension of the nullspace—the wealth of degrees of

freedom—influenced performance. Our results show that for a nullspace of sufficient

dimension, the task conflict from simple impedance superposition was comparable to

that of all nullspace projection methods.

5.2 Methods

The goal of these experiments was to examine the behavior of a redundant robot

placed under an end-effector impedance controller (Task 1), along with a joint-space

impedance controller (Task 2). Task 2 was either superimposed directly (𝑊−1 = 0)

or projected into the nullspace of Task 1 using each of the four weighting matrices

listed in Table 5.1. The experiments investigated both unconstrained motion and

forceful physical contact with a circular constraint, specified in Task 1. For all five
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weighting matrices, performance was quantified for different nullspace dimensions,

joint stiffnesses, and task speeds.

5.2.1 Experimental Setup

All experiments were conducted with a seven degree of freedom torque-controlled

KUKA LBR iiwa R800 (LBR) [Schreiber et al., 2010]. To facilitate measurement, in

each experiment the LBR was coupled to a customized InMotion2 Shoulder-Elbow

robot (Interactive Motion Technologies Inc.) via a U-joint and bearing connection.

The InMotion is a highly back-drivable light-weight torque controlled 𝑥 − 𝑦 planar

robot, which was designed for stroke rehabilitation and human motion research. The

custom control system for the InMotion robot was implemented on a CompactRIO

9034 controller, with low-level functionality implemented at 2 kHz on a CompactRIO

FPGA, and high-level functionality implemented at 1 kHz on a CompactRIO real-

time processor. InMotion joint positions were measured by a 16-bit/rev encoder

and interaction forces were measured at the end-effector of the InMotion robot using

an ATI Gamma force/torque transducer [Hogan et al., 1995, Thorup, 2018]. The

experimentally coupled robots are shown in Figure 5-1.

The U-joint (Neapco Components, Pottstown, PA) and bearing connection en-

abled a ±45∘ rotational range of motion about the 𝑥 and 𝑦 axes. Rotation around

the 𝑧 axis was facilitated by an ultra-low-friction dry-running sleeve bearing, which

also enabled translation along the 𝑧 axis. Thus, if the center of the U-joint is viewed

as the kinematic coupling point, the two robots are constrained relative to each other

translationally in the 𝑥−𝑦 plane, but not constrained translationally along the 𝑧 axis.

Furthermore, the U-joint decoupled rotations about all three axes.

Once the two robots were coupled together with the U-joint and bearing system,

the total amount of free-play or backlash in the coupling connection was quantified.

The brakes were applied on the LBR, nominally fixing it rigidly in space. The handle

of the InMotion robot was then lightly perturbed by hand in several directions, and

the resulting handle displacements were measured using the InMotion encoders. It

was found that the InMotion handle could undergo a displacement of ±1.5 mm in the
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𝑥− 𝑦 plane without applying appreciable forces to the LBR.

Figure 5-1: Experimental setup. (Left) Planar depiction of the InMotion Robot and
reference frame. The dotted circle denotes the zero-force trajectory of the InMotion
robot and the dashed circle denotes the zero-force trajectory of the LBR. (Right) The
LBR was coupled with a U-joint and sleeve bearing to the handle of the InMotion
robot. The inset in the upper left illustrates the rotational degrees of freedom allowed
by the U-joint and sleeve bearing.

5.2.2 Impedance Controller

The end-effector and joint-space impedance controllers were implemented on the LBR

using the KUKA Fast Research Interface (FRI), via an external PC, with torque

commands computed at 200 Hz. The FRI friction and gravity compensation was

active throughout all of the experiments. The analytical Jacobian matrix 𝐽(𝑞) ∈

R6×𝑛 of the robot was denoted by:

𝐽(𝑞) =

⎡⎣𝐽(𝑞)𝑥
𝐽(𝑞)𝜃

⎤⎦ . (5.8)

Here, 𝐽(𝑞)𝑥 ∈ R3×𝑛 maps the joint velocities �̇� ∈ R𝑛 to translational end-effector

velocities and 𝐽(𝑞)𝜃 ∈ R3×𝑛 maps �̇� to rotational end-effector velocities. In order to

define the controller, three reference frames were defined: a fixed base frame denoted

Σ𝑏 (this is displayed in Figure 5-1 as 𝑥, 𝑦, and 𝑧), a moving frame fixed to the center of
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the U-joint (which was taken to be the robot’s end-effector), denoted Σ𝑒, and a frame

moving with the LBR robot’s zero-force trajectory, denoted Σ0. Both, 𝐽(𝑞)𝑥 and

𝐽(𝑞)𝜃 were expressed with respect to the end-effector frame Σ𝑒. For the end-effector

translational impedance controller, the desired control torque 𝜏𝑥 ∈ R𝑛 was computed

by:

𝜏𝑥 = 𝐽(𝑞)𝑇𝑥

(︁
𝐾𝑥(𝑥0 − 𝑥)−𝐵𝑥�̇�

)︁
. (5.9)

𝜏𝑥 ∈ R𝑛 described a translational spring-damper system with linear stiffness 𝐾𝑥 ∈

R3×3 and linear damping 𝐵𝑥 ∈ R3×3. Both 𝐾𝑥 and 𝐵𝑥 were chosen to be diagonal

matrices. The virtual spring was attached between the Σ𝑒 and Σ0 frame. The position

of the end-effector 𝑥 ∈ R3 and the zero-force position 𝑥0 ∈ R3 were represented in

the base frame coordinates Σ𝑏. The zero force trajectory, 𝑥0, moved with constant

speed around a circular path with a radius of 0.1 m. For the end-effector rotational

impedance controller, the desired control torque 𝜏𝜃 ∈ R𝑛 was computed with:

𝜏𝜃 = 𝐽(𝑞)𝑇𝜃

(︁
𝐾𝜃�̂�0𝜃0 −𝐵𝜃𝜃

)︁
. (5.10)

The rotational torque 𝜏𝜃 aligned the axes of frame Σ𝑒 and moving frame Σ0. The

rotation between Σ𝑒 and Σ0 was expressed by the rotation matrix 0𝑅𝑒 ∈ 𝑆𝑂(3). To

calculate the rotational torque 𝜏𝜃 ∈ R𝑛, 0𝑅𝑒 was converted to axis-angle representa-

tion, with unit axis �̂�0 ∈ R3 and angle 𝜃0 ∈ R [Luh et al., 1980,Natale, 2003]. Thus, a

virtual rotational spring with rotational stiffness 𝐾𝜃 ∈ R3×3 was attached around �̂�0

to rotate about 𝜃0. This implementation was further discussed in detail in Appendix

I. The rotational velocity �̇� ∈ R3 was damped with dissipating element 𝐵𝜃 ∈ R3×3.

Note that all vectors and matrices of Equation 5.9 and 5.10 were expressed in Σ𝑏. The

stiffness in the 𝑧 direction was chosen to ensure the robot maintained contact with

the sleeve bearing in all trials. Finally, the translational and rotational end-effector

torques were combined,

𝜏𝑒 = 𝜏𝑥 + 𝜏𝜃. (5.11)

A diagonal 𝐾𝜃 and 𝐵𝜃 were chosen to approximate a constant damping ratio for
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each rotational direction in the end-effector impedance controller. The damping ratio

along each of the three rotational directions was roughly approximated as:

𝜁𝑖 =
𝑏𝑖

2𝑚𝑖

√︀
𝑘𝑖/𝑚𝑖

. (5.12)

Here, 𝑏𝑖 and 𝑘𝑖 represent the 𝑖th diagonal elements of 𝐵𝜃 and 𝐾𝜃 respectively, and

𝑚𝑖 is one of the corresponding three diagonal elements of the rotational end-effector

mass matrix Λ𝜃 ∈ R3×3 [Khatib, 1995], given by:

Λ𝜃 =
(︀
𝐽𝜃(𝑞)(𝑀(𝑞))−1𝐽𝜃(𝑞)

𝑇
)︀−1

, (5.13)

where 𝑀 (𝑞) ∈ R𝑛×𝑛 is the manipulator mass matrix. Given our choice for the values

of 𝑘𝑖, the values of 𝑏𝑖 were chosen to yield 𝜁𝑖 ≈ 0.4. This was a reasonable balance

between an undamped (𝜁 = 0) and critically damped (𝜁 = 1) behaviour.

For the joint-space impedance controller, the commanded torque 𝜏𝑞 ∈ R𝑛 was ex-

pressed by

𝜏𝑞 = 𝐾𝑞(𝑞0 − 𝑞)−𝐵𝑞�̇�, (5.14)

with joint-space stiffness 𝐾𝑞 ∈ R𝑛×𝑛 and joint-space damping 𝐵𝑞 ∈ R𝑛×𝑛. The

nominal joint position 𝑞0 ∈ R𝑛 was constant throughout the trial and corresponded

to a robot end-effector position at the origin of Σ𝑏 with a 15∘ rotation about both the 𝑥

and 𝑦 axes. This configuration was chosen so that the joint-space impedance controller

always conflicted with the end-effector impedance controller. The nominal joint-space

pose was 𝑞0 = [−56.16,−47.4, 87.7, 83.2,−42.1,−71.9, 28.8]𝑇 (degrees) and is shown

in Figure 5-2. 𝐵𝑞 was chosen as a function of 𝐾𝑞 to yield an approximate damping

ratio of 0.32 to 0.42 along each joint. This was done in a manner similar to (5.12),

but with 𝑘𝑖, 𝑏𝑖, and 𝑚𝑖 being each of the seven diagonal entries of 𝐾𝑞, 𝐵𝑞, and 𝑀(𝑞)

respectively.
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Figure 5-2: The nominal joint-space position (𝑞0) used in the experiments.

Finally, to vary the nullspace dimension, we composed the sub-controllers in two

ways: using the complete 6D rotational and translational end-effector torque 𝜏𝑒, yield-

ing a 1D nullspace; or using only the 3D translational end-effector torque 𝜏𝑥, yielding

a 4D nullspace. The nullspace projectors were modified as follows in the 1D and 4D

nullspace cases:

𝜏1D = 𝜏𝑒⏟ ⏞ 
Task 1

+𝑁1D𝜏𝑞⏟  ⏞  
Task 2

(5.15a)

and

𝜏4D = 𝜏𝑥⏟ ⏞ 
Task 1

+𝑁4D𝜏𝑞⏟  ⏞  
Task 2

(5.15b)

Here, the nullspace projector 𝑁1D ∈ R𝑛×𝑛 is defined using the complete Jacobian

matrix by

𝑁1D = 𝐼 − 𝐽(𝑞)𝑇 (𝐽(𝑞)#)𝑇 (5.16a)

to project the torques of the joint-space impedance controller (Task 2) into the

nullspace of the six dimensional end-effector impedance controller (Task 1). The

nullspace projector 𝑁4D ∈ R𝑛×𝑛 is defined using only the translational component of

the Jacobian matrix by

𝑁4D = 𝐼 − 𝐽(𝑞)𝑇𝑥 (𝐽(𝑞)
#
𝑥 )

𝑇 . (5.16b)

Likewise, it projects the torques of the joint-space impedance controller (Task 2) into

the nullspace of the three dimensional end-effector impedance controller (Task 1).
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Table 5.2: Controller Parameters. All non-diagonal stiffness and damping terms were
zero.

Variable Values Units

𝐾𝑥 diag([1800, 1800, 2000]) N/m

𝐵𝑥 diag([43.3, 31.68, 37.19]) N-s/m

𝐾𝜃 diag([260, 260, 100]) N/rad

𝐵𝜃 diag([3.0, 3.4, 1.6]) N-s/rad

𝐾𝑞 diag([10, 10, 10, 10, 5, 5, 1]) N-m/rad

𝐵𝑞 diag([2.5, 3.6, 2.1, 2.1, 0.3, 0.2, 0.1]) N-m-s/rad

𝐾𝑞,𝑙𝑜𝑤,1𝐷 0.1𝐾𝑞 N-m/rad

𝐵𝑞,𝑙𝑜𝑤,1𝐷

√
0.1𝐵𝑞 N-m/rad

𝐾𝑞,𝑙𝑜𝑤,4𝐷 0.3𝐾𝑞 N-m/rad

𝐵𝑞,𝑙𝑜𝑤,4𝐷

√
0.3𝐵𝑞 N-m/rad

5.2.3 Test Conditions

The performance of impedance superposition (𝑊−1 = 0) and a conventional choice

of nullspace projector (𝑊 = 𝐼) was evaluated under several test conditions. First,

each condition was tested when the circular constraint was off and when it was on,
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denoted ‘unconstrained’ and ‘constrained’, respectively. Second, in each case the

nullspace dimension was either one or four. Third, the influence of the LBR controller

parameters was investigated. Fourth, to compare nullspace projection methods, the

effect of weighting matrix was evaluated. Each of these conditions is described in

detail in this section; a summary is presented in Table 5.3.

Circular Constraint

In all conditions, the LBR was coupled to the InMotion with a U-joint and bearing

system described above. In the unconstrained trials the InMotion robot was turned

off; it remained passive and highly back-drivable, but still coupled to the LBR. In

the constrained trials, the InMotion robot enforced a circular constraint (radius =

0.08 m). This constraint was enforced by an impedance controller, with a normal

stiffness of 2,500 N/m, and a normal damping of 40 Nm/s. The accuracy of rendering

the constraint was verified by kinematic and end-point force/torque measurements

obtained from the InMotion robot. The differing radii of the LBR’s zero-force position

(0.1 m) and the constrained circular path enforced by the InMotion robot ensured

that the observed behavior occurred under conditions of significant forceful contact.

In all experiments, the InMotion encoders and force transducer were used to record

the planar interaction-point positions and interaction forces presented herein.

Nullspace Dimension

For all experiments, Task 2, the nullspace-projected joint-space impedance controller,

was always active. However, the number of dimensions in Task 1 was varied. In

some experiments, only the end-effector translational impedance controller was ap-

plied (Equation 5.16b). This meant that the end-effector task was three-dimensional,

resulting in a four-dimensional nullspace. For other experiments, both the transla-

tional and rotational controllers of Equation 5.16a were applied. This resulted in a

six-dimensional end-effector task, leaving a one-dimensional nullspace.

143



Weighting Matrix

To quantify performance differences due to the choice of weighting matrix 𝑊 , five dif-

ferent weighting matrices were tested: 0, 𝐼, 𝑀 (𝑞), 𝐵𝑞, and 𝐾𝑞. A weighting matrix

choice of 𝑊−1 = 0 which results in 𝑁 = 𝐼; this is the case of simple superimposition

of the end-effector and joint-space tasks, without a nullspace projector. We initially

compared that case to a representative weighting matrix, 𝑊 = 𝐼, which corresponds

to the well-known Moore-Penrose pseudo-inverse [Penrose, 1955]. Subsequently, per-

formance with the other weighting matrices was quantified.

Controller

To understand the influence of robot inertial dynamics and the joint-space impedance

controller used to manage redundancy, three conditions were examined: moderate

joint-space stiffness and slow speed (13 sec/rev), which is hereafter referred to as a

‘standard’ condition; moderate joint-space stiffness and fast speed (4 sec/rev); and low

joint-space stiffness and slow speed. A period of 13 sec/rev was extremely slow; at this

speed, all dynamic effects were negligible, the motion was quasi-static, and behavior

was dominated by the controller stiffness. If joint-space stiffness is sufficiently large

relative to task-space stiffness, managing redundancy using joint-space impedance will

substantially interfere with the end-effector task. In this work the ‘moderate’ joint-

space stiffness was chosen to be large enough to cause substantial deviation from the

desired end-effector task (more than 10 cm when unconstrained and more than 10

N when constrained) when the impedances were superimposed (i.e. the 0 projector

case). The fast speed, a period of 4 sec/rev, was chosen to elicit significant dynamic

effects due to the robot’s inertial dynamics. Quantitative analysis of the quasi-static

vs. dynamic speeds is presented in Appendix G.

To test whether a nullspace projection is even required in the first place, a low

joint-space stiffness condition was included, executed at the slow speed (13 sec/rev).

This stiffness was chosen to be the smallest value that would ‘manage the redundancy’

of the robot within a single cycle. If a large joint-space position disturbance was
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applied to the LBR arm, it would return to a set of joint angles near the nominal

joint configuration within one crank-turning cycle. This low joint-space stiffness and

damping differed when the nullspace dimension varied; the exact values used are

reported in Table 5.2.

Table 5.3: Test conditions and notations in this paper.

Condition Parameter Notation

LBR

Weighting Matrix 𝑊 See methods 0, 𝐼, 𝑀 (𝑞), 𝐵𝑞, 𝐾𝑞

Nullspace Dimension 𝑛−𝑚 = 1 1D

𝑛−𝑚 = 4 4D

Controller 𝐾𝑞, 13 𝑠/𝑟𝑒𝑣 Standard

𝐾𝑞, 4 𝑠/𝑟𝑒𝑣 Fast Speed

𝐾𝑞,𝑙𝑜𝑤, 13 𝑠/𝑟𝑒𝑣 Low Stiffness

InMotion

Circular constraint − Unconstrained

radius 0.08 𝑚 Constrained

5.2.4 Data Analysis

In each trial the LBR completed two separate motions of three revolutions each. The

abrupt engagement of the robot controller at the start of each motion induced tran-

sient behavior in the robot end-effector motion as task 1 was not critically damped.

To eliminate possible transients from the data analysis, the first revolution in each of

these trials was discarded.
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In the standard condition, since the robot moved quasi-statically, dominated by

stiffness, the robot was expected to closely follow the target position of the end-

effector impedance controller when a nullspace projector was used. To quantify errors

in position, the displacement normal to the closest point on the circle was computed,

Δ𝑥 = 0.1− 𝑟𝑛 (5.17)

where 0.1 m was the desired distance from the origin and 𝑟𝑛 =
√︀

𝑥2 + 𝑦2 was distance

from the origin to the actual robot position. This was the dependent measure for the

unconstrained case.

In the constrained condition, the radius of the zero-force LBR path was 𝑥0 = 0.1 m,

while the radius of the InMotion’s virtual constraint was 0.08 m. Thus the LBR robot

was expected to move in a perfect circle at a radius determined by equilibrium between

the stiffnesses of the LBR and InMotion robots. This required a constant normal

force of 20.93 N to be exerted on the InMotion handle. Positive normal force denoted

an outward-directed force exerted on the InMotion handle, away from the circular

constraint center; conversely, negative normal force was directed inwards, toward the

constraint center. Thus the dependent measure in the constrained condition was the

deviation of the measured normal force from the expected normal force:

Δ𝑓 = 20.93− 𝑓𝑛. (5.18)

For each of the dependent measures, the root-mean-squared-error (RMSE) was

computed for four crank cycles. While this metric was expected to approach zero

only in the quasi-static case, it was also applied to the fast trials, even though the

dynamic effects were expected to be significant and result in a non-zero mean force

error, e.g. due to centrifugal acceleration. Nevertheless, it remained a suitable metric

with which to compare the behaviors of different projector choices and nullspace

dimensions.
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5.2.5 Statistical Analysis

The difference of RMSE between the superposition of mechanical impedance (𝑊−1 =

0) and a standard nullspace projector (𝑊 = 𝐼) was computed. This difference was

denoted RMSE 0 − 𝐼. When unconstrained, the RMSE difference was computed in

terms of position; when constrained, the RMSE difference was computed in terms

of normal force. For both the unconstrained and constrained conditions, a two-way

analysis of variance (ANOVA) was performed. The ANOVA assessed the effect of

nullspace dimension (1D or 4D) and controller condition (moderate stiffness, slow;

moderate stiffness, fast; or low stiffness, slow) on the RMSE difference. For both

the unconstrained and constrained results, three post-hoc two-sample t-tests were

performed to determine if a significant difference existed between the 1D and 4D con-

ditions. Two post-hoc one-sample t-tests were performed to determine if impedance

superposition was significantly different from nullspace projection in the constrained

4D nullspace standard and fast conditions.

In this work, statistical analysis aimed to assess differences between multiple con-

ditions, each of which possessed more than one level. To avoid Type I errors (false

positive) associated with performing multiple t-tests, ANOVA was first employed to

determine if statistically significant differences between the means existed. The test

statistic used by ANOVA is described by the F-distribution. The results present the

F-statistic, its associated degrees of freedom, and the probability of a non-significant

effect. The analysis used in this work is described in several standard texts, e.g. [Kep-

pel and Wickens, 2004].

The differences of RMSE between the identity weighting matrix (𝑊 = 𝐼) and all

other weighting matrices (𝑀 (𝑞), 𝐵, and 𝐾) were computed. These differences were

denoted RMSE 𝐼−𝑊 . For each nullspace dimension and constraint condition, a two-

way ANOVA was performed to assess the effect of nullspace weighting matrix (𝑀(𝑞),

𝐵, or 𝐾) and controller condition (moderate stiffness, slow; moderate stiffness, fast;

or low stiffness, slow). Post-hoc one-sample t-tests were run to identify significant

differences between in RMSE 𝐼 −𝑊 .
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5.3 Results

In this section, the unconstrained results in the standard condition (slow, moderate

stiffness) are presented first. Next, constrained results in the standard condition are

shown. Third, the results of fast, moderate stiffness trials are reported. Fourth, results

with low joint-space stiffness and slow speed are presented. Finally, a comparison of

different nullspace weighting matrices is reported.

5.3.1 Standard Condition, Unconstrained

In the unconstrained condition, the InMotion robot did not enforce a circular con-

straint. However, the InMotion robot remained passively coupled to the LBR with

the U-joint and bearing system. With no constraint, we hypothesized that when

the robot was operating with a nonzero nullspace projection weighting matrix, there

would be no disruption of Task 1 from Task 2, regardless of whether the nullspace

had one dimension or four. The trajectory was expected to be close to or even overlay

the circular robot path 𝑥0 (bold dashed line in Figure 5-3) and with 𝑊 = 𝐼, this

was indeed observed.
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Figure 5-3: Standard condition, unconstrained: 1D nullspace (left column) and
4D nullspace (middle column). Trajectory plots (top left and top middle) and the
zero-force path of the LBR (bold dashed line). Normal force plots (bottom left
and bottom middle). Position RMSE (top right). The superposition of mechanical
impedance is denoted by 𝑊−1 = 0 (blue) and the Moore–Penrose inverse denoted
𝑊 = 𝐼 (red). The superposition of mechanical impedances was substantially less
disruptive with a 4D nullspace.

In the 𝑊−1 = 0 case, superimposing impedances was expected to result in conflict

between Tasks 1 and 2, leading to significant tracking errors in Task 1. This was

observed in the 1D nullspace condition (see Figure 5-3 top left). The 𝑊−1 = 0 case

(blue line) substantially deviated from the circular trajectory of the LBR end-effector

task, as indicated by the bold dashed line.

While it was expected that Task 2 would visibly conflict with Task 1 in the absence

of a valid nullspace projector, one unexpected result was that when the dimension of

the nullspace was increased from one to four (by removing the rotational impedance

controller from Task 1), the task conflict was substantially reduced. This can be seen

in Figure 5-3 (top middle).

To assess quantitative differences in the unconstrained trials, the RMSE of the

robot position was computed. This provided a measure of the deviation from ex-

pected behavior as seen in Figure 5-3 (top right) and quantified the qualitative obser-
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vations. Remarkably, for both the 1D and 4D nullspace conditions, there appeared

to be no appreciable difference between the various non-zero projectors. In the 1D

nullspace case, the zero projector (impedance superposition) introduced substantial

task conflict, while in the 4D nullspace case, the RMSE it evoked was not appreciably

higher than any of the other projectors. These differences are compared statistically

in section 5.3.5.

5.3.2 Standard Condition, Constrained

In the constrained condition, both force and motion must be considered. In this ex-

periment, the virtual constraint radius enforced by the InMotion was 0.08 𝑚 and the

diameter of the zero-force robot path was 0.1 𝑚. Thus, the LBR was expected to move

along a constant radius circle between the InMotion (dotted) and LBR (dashed) lines

in Figure 5-4 (top). In the standard trials, the motion was quasi-static, well within

the stiffness-dominated regime, meaning that all dynamic effects were negligible (Ap-

pendix G). The displacement of the handle from its zero-force path was determined

by the relative stiffness of the two robots and a constant normal force should have

been exerted.

As expected, with a 1D nullspace the superposition of joint-space stiffness sub-

stantially disrupted the LBR task-space position and normal force (the solid blue line

in the top two panels of Figure 5-4). The disruption of the task was sufficient for the

robot occasionally to exert inward normal forces on the virtual constraint. Inward

(compressive) normal forces exerted on a constraint surface are inherently destabiliz-

ing [Rancourt and Hogan, 2001]. This demonstrates that superposition of joint-space

and task-space mechanical impedance may, in some cases, lead to static instability

and potential safety concerns.

As with the unconstrained case, the superposition of mechanical impedance (𝑊−1 =

0) performed substantially better with a 4D nullspace as seen in Figure 5-4. These

differences are compared statistically in section 5.3.5.
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Figure 5-4: Standard condition, constrained: 1D nullspace (left column) and 4D
nullspace (middle column). Trajectory plots (top left and top middle), the zero-force
path of the LBR (bold dashed line), and the zero-force path of the InMotion (dotted
line). Normal force plots (bottom left and bottom middle) and the expected normal
force (bold dashed line). Normal force RMSE (bottom right). The superposition
of mechanical impedance is denoted by 𝑊−1 = 0 (blue) and the Moore–Penrose
inverse denoted 𝑊 = 𝐼 (red). With a 4D nullspace, the superposition of mechanical
impedances was substantially less disruptive.

5.3.3 Fast Motion

Fast motions were tested to elicit behavior in which inertial dynamics were substantial.

With a 1D nullspace, both impedance superposition 𝑊−1 = 0 and nullspace projec-

tion 𝑊 = 𝐼 showed visible deviations from nominal motion when unconstrained

(Figure 5-5, top left) and from nominal force when constrained (Figure 5-5, bottom

left). With a 4D nullspace, these deviations were substantially reduced, both motions

when unconstrained (Figure 5-5, top middle) and forces when constrained (Figure

5-5, bottom middle). A comparison of RMSE for position is shown in Figure 5-5,

top right and force in Figure 5-5, bottom right. While impedance superposition was

clearly inferior with a 1D nullspace, that disadvantage was nearly eliminated by the

4D nullspace. These differences are compared statistically in section 5.3.5.
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Figure 5-5: Fast motion: Comparison of unconstrained (top row) and constrained
(bottom row) trials with impedance superposition (𝑊−1 = 0) and nullspace pro-
jection 𝑊 = 𝐼. Trajectories are presented for the unconstrained trials and normal
forces for the constrained trials. Performance with a 1D nullspace is shown in the
left column and with a 4D nullspace in the middle column. The right column com-
pares the RMSE of position (unconstrained) and normal force (constrained). With a
4D nullspace, comparable position errors and smaller force errors were achieved with
impedance composition.

5.3.4 Low Joint-Space Stiffness

For a redundant robot, one way of achieving a predictable motion is to assign joint-

space impedances that affect the nullspace motion of the robot in a repeatable man-

ner. As can be seen in section 5.3.1 and 5.3.2, these impedances may cause a conflict

between Task 1 and Task 2. Of course, the smaller the joint-space impedance, the

smaller the task conflict. However, as the joint-space stiffness is reduced, external per-

turbations or small errors in friction compensation may cause the redundant degrees

of freedom to deviate from the nominal configuration. This may lead to unpredictable

or undesirable behavior; for example, joint-space drift may cause the robot to reach

joint limits. In this experiment we aimed to determine if an acceptable compro-

mise between these two competing factors could be achieved. We tested whether
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joint-space stiffness could be made small enough to reduce task-space disruption to

acceptable levels, yet large enough to ensure desirable behavior. In this experiment,

the joint-space stiffness of Task 2 was reduced to the point where it was still sufficient

to restore the nominal joint-space configuration within one cycle of motion. The exact

parameters used are presented in Table 5.2.

The results of using this lower joint-space stiffness can be seen in Figure 5-6. In

the unconstrained case with a 1D nullspace, impedance superposition still resulted

in greater RMSE position errors than nullspace projection, though, as expected, to

a much lesser degree. With a 4D nullspace, any difference became negligible. These

differences are compared statistically in section 5.3.5.

Figure 5-6: Low stiffness condition: Performance with low stiffness at slow speed,
with a 1D nullspace (left column) and a 4D nullspace (middle column). Trajectories
are presented in the unconstrained case (top left and top middle) and normal force in
the constrained (bottom left and bottom middle). The right column compares RMSE
for position when unconstrained (top row) and force when constrained (bottom row).

5.3.5 Statistical Comparisons

The RMSE 0−𝐼 for the position in the unconstrained case showed a significant main

effect of nullspace dimension (𝐹1,18 = 8148.94, 𝑃 << 0.001), a main effect of con-
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troller (𝐹2,18 = 2494.55, 𝑃 << 0.001), and a significant interaction between nullspace

dimension and controller (𝐹2,18 = 1886.36, 𝑃 << 0.001). Post-hoc two-sample t-

tests identified significant differences between 1D and 4D nullspace dimension at the

standard, fast, and low stiffness levels of the controller conditions. Figure 5-7 (left)

shows that the interaction was clearly due to a greater sensitivity to controller with a

1D nullspace. Thus, the effect of increasing nullspace dimension was significant and

substantial.

Figure 5-7: Difference in root-mean-squared errors between impedance superposition
and nullspace projection for different controller parameters and nullspace dimensions.
* denotes statistical significance with 𝑃 < 0.05. Left panel: RMSE 0− 𝐼 of position
for unconstrained motions; Right panel: RMSE 0− 𝐼 of normal force for constrained
conditions. With a 4D nullspace, both position and force errors were reduced and
occasionally impedance superposition was superior to nullspace projection.

The RMSE 0 − 𝐼 for normal force in the constrained case showed a significant

main effect of nullspace dimension (𝐹1,18 = 9960.34, 𝑃 << 0.001), a main effect

of controller (𝐹2,18 = 3672.30, 𝑃 << 0.001), and an interaction between nullspace

dimension and controller (𝐹2,18 = 2078.45, 𝑃 << 0.001). Post-hoc two-sample t-

tests identified significant differences between 1D and 4D nullspace dimensions at the

standard and fast levels of controller. Clearly, the negligible difference at the low

stiffness level of the controller was the cause of the interaction as seen in Figure 5-7

(right). Thus, the effect of increasing nullspace dimension on the RMSE 0−𝐼 normal

force was significant and substantial when the joint-space stiffness was not negligible.
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Different Weighting Matrices

We found no evident differences between the various non-zero null-space weighting

matrices. The trajectories corresponding to the different nullspace projections all

very nearly lay on top of one another. With a 4D nullspace, there appeared to be

small, systematic differences in the normal forces but they were minimal.

This was somewhat surprising. Theoretically, using the 𝑀(𝑞) weighting matrix

yields a dynamically-consistent nullspace projector and should therefore show supe-

rior behavior for fast robot motions [Dietrich et al., 2015,Chang and Khatib, 1995].

However, without an accurate inertial model of the robot, other projector choices

may lead to superior performance in practice [Dietrich et al., 2015, Albu-Schaffer

et al., 2003,Nakanishi et al., 2008,Peters et al., 2008]. In the experiments reported

here, a negligible difference between projection methods was observed (See Figure

5-8). Of these small differences one notable observation was that using the mass

matrix, 𝑊 = 𝑀(𝑞), was not superior – even in the fast case. Indeed, in many cases

performance using the mass matrix was slightly worse than with the other choices.

Figure 5-8: RMSE 𝐼−𝑊 of position for the unconstrained (top) and RMSE 𝐼−𝑊 of
normal force for the constrained conditions (bottom). Note that the identity weighting
matrix was comparable to if not better than the other weighting matrix choices in
nearly every condition.

Four ANOVAs were performed to assess the influence of weighting matrix and

controller. With a 1D nullspace, the RMSE 𝐼 −𝑊 for position in the unconstrained
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case showed no significant effects; however the main effect of controller was nearly

significant (𝐹2,27 = 3.31, 𝑃 = 0.0519).

For constrained motion, the RMSE 𝐼 −𝑊 for normal force with a 1D nullspace

showed no significant effect of weighting matrix or controller.

With a 4D nullspace, the RMSE 𝐼 − 𝑊 for position in the unconstrained case

showed a main effect of weighting matrix (𝐹2,27 = 95.47, 𝑃 << 0.001), a main effect

of controller (𝐹2,27 = 98.45, 𝑃 << 0.001), and a significant interaction between

weighting matrix and controller (𝐹4,27 = 43.77, 𝑃 << 0.001). The RMSE 𝐼 − 𝑊

for the normal force showed a main effect of weighting matrix (𝐹2,27 = 11.36, 𝑃 <<

0.001), and a main effect of controller (𝐹2,27 = 9.40, 𝑃 = 0.001). Post hoc t-tests

revealed that only the unconstrained fast speed 𝐵 matrix condition was significantly

better than the 𝐼 weighing matrix. To our knowledge this was the first time a damping

matrix was used as a weighting matrix; it shows promising results.

Despite the statistical significance of some of these comparisons, the magnitude

of the differences between projection methods was small (RMSE less than 1.5 mm

and less than 1 N respectively in all cases). These values are close to the resolution

of the measurement system. Furthermore, the robot variability across trials was

extremely low, which increased the sensitivity of the statistical methods. Thus, while

significant effects of nullspace weighting matrix were detected, these significant effects

were insubstantial and mainly reflect the repeatability of the robot.

5.4 Discussion

The literature on redundancy management, particularly in the areas of reaching and

manipulation, predominantly considers nullspace projection methods and their appli-

cation. One direction of research focused on qualitative evaluation of weighting ma-

trix choice in either free-space or contact tasks [Sadeghian et al., 2014,Dietrich et al.,

2015,Whitney, 1969,Khatib, 1987,Albu-Schaffer et al., 2003,Baillieul, 1985,Hollerbach

and Ki Suh, 1987,Dietrich et al., 2012]. Another direction of research explored large

task hierarchies in which a full-rank joint-space redundancy-managing impedance
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plays an insignificant role at the bottom of the hierarchy [Antonelli et al., 2009,Sicil-

iano and Slotine, 1991,Dietrich et al., 2012,Dietrich et al., 2013,Dietrich et al., 2015].

In most of the literature, the case of simple impedance superposition is not consid-

ered. This is presumably because, in theory, impedance superposition may cause task

conflict, while the use of nullspace projectors will not. In practice, however, this may

not be the case.

The goal of the present work was to investigate real kinematically redundant robots

with all of their non-ideal behavior, including friction, kinematic errors, etc. These

robots are increasingly used to manage complex physical interaction. We aimed to

quantify the performance in practice of commonly used control methods – specifically

nullspace projections – and compare them with impedance superposition. The stabil-

ity concerns presented by physical interaction motivate understanding any differences

between theoretical and actual performance.

The experimental paradigm investigated in this work, turning a crank, embod-

ies a number of key challenges encountered in physical interaction tasks. The first is

contact and/or coupled instability; it has been known since the 1970’s that a robot ca-

pable of stable unconstrained motion may become unstable on contact with a physical

constraint. A well-established solution to this problem is to ensure energetic passivity

of the robot’s dynamic interactive behavior [Colgate and Hogan, 1988,Hogan, 1988].

Generally, nullspace projection approaches are not passive, since the projector only

acts on the force/torque factor of the product that determines mechanical power and

is not power-continuous. For this reason energy tank methods have been applied to

ensure the passivity of nullspace projection methods [Dietrich et al., 2016, Dietrich

et al., 2017]. Even if the interactive behavior is dynamically passive (by the usual

definition) static instability may be induced by the curvature of a kinematic con-

straint. Forces applied towards the center of curvature (compressive) are statically

de-stabilizing while forces applied away from the center of curvature (tensile) are stat-

ically stabilizing [Rancourt and Hogan, 2001,Rancourt and Hogan, 2009]. This is an

important distinction as the usual definition of passivity and its relevance to coupled

stability does not encompass the static (in-)stability that may be induced by exert-
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ing forces [Edward Colgate, 1992]. Managing both of these challenges is a minimum

requirement for safe and successful physical interaction [Lachner et al., 2021,Hjorth

et al., 2020].

This work quantified the performance of existing controllers in practice on real

hardware. We report three major findings: (1) Using different nullspace weight-

ing matrices made no substantial difference; (2) In practice, task conflicts were still

present even with nullspace projections; (3) Increasing the nullspace dimension dra-

matically decreased task conflicts resulting from impedance superposition.

It is important to note that, in nearly every condition, the identity weighting

matrix achieved comparable or better performance than the more complex weighting

matrices. In practice, there may be little need for complex nullspace projections.

In this experiment, the simplest approach, identity weighting, worked equally well

or better than the other options investigated. Since the identity weighting matrix

facilitates computation, this result might be beneficial for controlling robots with

many degrees-of-freedom based on nullspace projection methods.

In the work reported here, we implemented only two multi-dimensional tasks, en-

abling us to manipulate the ‘wealth’ of nullspace degrees of freedom left by the first

task. This allowed us to examine the impact of excess degrees of freedom between the

primary task and the redundancy-management task. Additionally, we went beyond

qualitative comparison, and statistically examined the impact of weighting matrix

choice, task speed, impedance magnitude, and degree of task error with simple su-

perposition in both unconstrained motion and contact scenarios. A key result of this

study was that increasing the effective nullspace dimension decreased the task conflict

when impedance superposition was used.

5.4.1 Limitations

There are several potential sources of artifact in this work which include errors in the

robot’s kinematic model, dynamic model, friction-compensation model, and the choice

of task conflict metric. Using nullspace projection, the task conflict was theoretically

expected to be zero. When implementing controllers on real hardware, errors may be
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expected due to numerical artifact and/or imperfect low-level torque control. Both of

these effects should have been small; errors observed in our experiments were much

larger than could be explained by imprecise torque control. Nevertheless, the torque

commands may have been influenced by the highly nonlinear effects of friction. In the

experiments, the LBR’s friction compensation was active to ameliorate these effects

but in practice this compensation was not expected to perform perfectly. However,

the same imperfections were present whether impedance superposition or nullspace

projection was used. They cannot account for the differences we observed.

It may seem that the choice of impedance parameters could have influenced the

results. This was avoided by experimental design. This work investigated a possible

conflict between two impedance controllers. The experiment was designed such that

the impedance of one controller was held constant and the other was varied. In this

experiment, the end-effector impedance was fixed and two levels of joint impedance

were investigated. The ‘standard’ condition used a joint stiffness which was delib-

erately chosen to be large enough to cause a task conflict in the 1D nullspace case.

The second ‘low joint stiffness’ condition was chosen by decreasing the stiffness to

the lowest value that would ‘resolve the redundancy’ (restore unperturbed motion

within one cycle of motion). The main results of the paper were observed in both

the standard and low joint stiffness conditions. They cannot be dismissed as due to

a fortuitous selection of impedance parameters.

Another possible source of artifact might have been the choice of metric with

which to quantify task conflict. For statistical analysis we chose to use the difference

in RMSE (of position and force for unconstrained and constrained tasks, respectively)

between the two controllers. This avoided any concern related to the absolute mag-

nitude of these RMSE measures.

Another potential source of error was the model assumed by the nullspace projec-

tors. Considering that the task conflict was observed when moving quasi-statically,

dynamics could not have been the cause of artifact. All nullspace projections depend

on the Jacobian, which requires a model of the robot kinematics. If the kinematic

model was incorrect, a difference between the actual robot nullspace and the model
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robot nullspace would exist. Our observations suggest that nullspace projection may

be more sensitive to errors in the kinematic model than impedance superposition.

This would be consistent with previous theoretical work which has shown that the

stability and passivity of an impedance controller is remarkably insensitive to errors

in the kinematic model of the robot [Hogan, 1988].

Finally, a concern might be raised that our results were peculiar to the mechan-

ics and kinematics of the particular robot, task and configuration that we studied.

To address this concern we performed simulations of arguably the simplest hypo-

thetical case that could demonstrate the influence of increasing nullspace dimension

(Appendix H). A planar 3 degree-of-freedom linkage performed a 3 degree-of-freedom

end-effector task (nullspace dimension 0) and a comparable 2 degree-of-freedom end-

effector task (nullspace dimension 1). Figure H-1 clearly demonstrates the substantial

influence of nullspace dimension, even with idealized kinematics and zero friction. Our

results are unlikely to be an accident of the particular robot, task and configuration

that we studied.

5.4.2 Analogy to Polynomial Kernel Methods?

When the nullspace dimension was increased, a substantial decrease in task space dis-

ruption was observed. One explanation of this result may be that increasing nullspace

dimension with respect to a primary task increases the number of poses that the robot

can take. This makes the robot more likely to reach a configuration which will result

in a smaller task conflict. This approach, which casts a low-dimensional problem into

a high-dimensional space, appears loosely analogous to common-practice data-driven

methods for classification. It is well known that a low-dimensional problem which is

sparsely populated can be non-linearly cast into a higher dimensional space, e.g. using

the polynomial kernel method [Farouki, 2012]. This projection increases the likeli-

hood that a problem which was not linearly separable in the low-dimensional space

will be linearly separable in the high dimensional space [Cover, 1965]. We suspect

that a similar phenomenon may account for our results but testing this speculation

requires further investigation beyond the scope of this report.

160



5.4.3 Understanding Human Motor Control

Humans do not simply regulate kinematics. Humans also modulate the interactive

dynamics of their limbs [Hogan, 1985a, Hogan, 1985b, Hogan, 1985c]. Human limb

impedance varies as a function of many factors including: muscle activation [Cannon

and Zahalak, 1982], movement [Bennett et al., 1992], activity preparation [Lacquaniti

et al., 1993], force exertion level [Perreault et al., 2001], task stabilization [Burdet

et al., 2001], and walking gait state [Lee and Hogan, 2015,Lee et al., 2016]. Despite

about three times as many muscles as skeletal degrees of freedom, if the human limb

is viewed as an actuator configured to produce an arbitrary time-varying impedance

in an arbitrary configuration, it becomes clear that the human limb is profoundly

underactuated.

However, humans modulate impedance not only with muscle activity, but also

kinematics [Hogan, 1985d, Trumbower et al., 2009]. In many tasks the influence of

kinematics can be more than an order of magnitude greater than muscle activity or

joint torque. Thus, kinematic redundancy increases the range of impedance which the

human limb can produce. The kinematic nullspace is an essential aspect of human

physical interaction. Even though the work reported here was performed on a robotic

platform, it demonstrated one of the many benefits of the high-dimensional skeletal

anatomy that humans possess.

This substantial influence of kinematics may be the reason that several example

cases, which employ simple models of impedance, have been able to describe obser-

vations of human behavior [Flash, 1987,Hermus et al., 2020,Hermus et al., 2020] and

achieve human-like performance [Nah, 2020].

5.4.4 Applications to Robotics

One notable result was that there may be cases in which there is no need for a

nullspace projector. Instead, the simpler approach of mechanical impedance super-

position may be applied. This approach may be successful when the task dimension

is small relative to the number of joint-space degrees of freedom; or when only small
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joint-space stiffness is required; when there are computational limitations; or when

dynamic interactive behavior is prioritized over exact position or force accuracy.

However, we do not conclude that impedance superposition is always superior to

nullspace projection; in fact our own results showed cases in which it was not. For

moderate joint-space stiffness, there was substantial disruption of Task 1 (in end-

effector space) by Task 2 (in joint-space) as intended by the experimental design.

That disruption was sufficient to exert compressive forces on the constraint, which is

inherently destabilizing and potentially unsafe. With sufficient end-effector stiffness,

instability can be avoided and passivity preserved [Colgate and Hogan, 1988,Edward

Colgate, 1992]. The biological solution to this problem is that muscle stiffness in-

creases in proportion to muscle force (one of the most robust observations about

mammalian muscle) [Hoffer and Andreassen, 1981,Maganaris, 2001] but it is unclear

whether this is a satisfactory approach for robotic applications. With a 1D nullspace

and moderate or greater joint-space stiffness, nullspace projections may be required.

5.4.5 Future Work

There are several directions of future work which could provide valuable insight to

the observations reported here. We highlight two of them: First, in this work only

two nullspace dimensions were investigated. Clearly, the nullspace dimension can be

modulated in two ways, by either changing the dimension of task one or by changing

the dimension of task two. This simple idea motivates a systematic experimentation

or simulation to investigate these factors. Second, this experiment was specifically

designed to make the task conflict easy to quantify. However, if more complex tasks

are to be understood, alternative metrics for quantifying task conflicts may be required

[Schettino et al., 2020].

5.5 Conclusions

In robotics, controlling a large number of redundant degrees of freedom has commonly

been viewed as a difficult challenge to overcome, especially if control is performed
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via optimization-based techniques. A common approach to deal with the control

of kinematically redundant robots is the nullspace projection method. A simpler

alternative is based on superimposing mechanical impedances, but that approach

is vulnerable to task conflict, whereas nullspace projections theoretically avoid this

problem. In practice, we observed that both nullspace projections and impedance

superposition resulted in measurable task conflict. This surprising observation was

minimally influenced by the choice of projection weighting matrix. Remarkably, when

the dimension of the nullspace increased, the superposition method showed errors that

were comparable to the nullspace projection methods. With no disrespect intended

to Richard Bellman, high-dimensional kinematics may be a blessing rather than a

curse.
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Chapter 6

Dynamic Primitives Limit Human

Force Regulation during Motion

This chapter is an adapted version of [West et al., 2022] published in IEEE Robotics

and Automation Letters. This work was done in collaboration with Michael West,

Meghan Huber, and Pauline Maurice.

6.1 Introduction

The majority of human neuro-motor control research to date has focused on the

control of motion during free unconstrained reaching without physical contact (for

review see [Gulletta et al., 2020,Campos and Calado, 2009]). In this case, relating a

planned motion to an actual motion is sufficient to describe the control system. In

robotics, the mathematics underlying motion control is well understood [Slotine and

Asada, 1992]. However, most tasks that humans and robots perform require physical

interaction with the external environment; for such interactive tasks, motion control

alone is insufficient.

During physical interaction, bidirectional forces between the actor and the en-

vironment critically affect the behavior of the coupled system. If humans regulate

motion during free reaching, a simple extension of this idea to contact tasks may be
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to regulate both force and motion. In robotics, hybrid control allows for simultaneous

and independent control of both motion and force in complementary subsets of the

workspace [Mason, 1981,Raibert and Craig, 1981]. In human motor control, it is yet

unresolved whether humans can control force independent of motion.

Several studies in human motor neuroscience have reported findings in support of

such hybrid control. For example, Chib et al. [Chib et al., 2009] found that hybrid

motion / force control can describe how humans performed an interaction task in a

virtual force field. Casadio et al. [Casadio et al., 2015] presented and experimentally

validated a computational model of how the neural system may combine two inde-

pendent modules that separately control motion and force. Further, neural activity in

the motor and parietal cortex of non-human primates indicate that there are separate

modules for the control of force and motion [Georgopoulos et al., 1992,Hamel-Pâquet

et al., 2006,Sergio and Kalaska, 1998].

On the other hand, it has been shown that the central nervous system (CNS)

contains a controller that modulates the coupling of force and motion [Kolesnikov

et al., 2011,Piovesan et al., 2019]. Other studies demonstrated that humans modulate

the relation between motion and force during upper limb reaching in unstable force

fields [Burdet et al., 2001,Milner and Franklin, 2005,Osu et al., 2003,Takahashi et al.,

2001]. Additionally, our own previous research showed that exerted force depended on

the velocity profile when grasping and following a robot manipulandum. Specifically,

participants were asked to trace the motion of a robot manipulandum without exerting

force as it moved on an elliptical path with varying velocity profiles [Maurice et al.,

2018b]. If force can be controlled independent of motion, the velocity profile should

not matter; however, it did.

This study aimed to examine human control of physical interaction that could

resolve these seemingly contradictory results. We conducted an experiment in which

participants physically interacted with a motion-controlled robot to test whether hu-

mans could regulate force independent of motion. We refer to this independent control

as ‘direct force control’ (Figure 6-1a). Explicitly, direct force control applies an actual

force as a function of only a planned force. This function is an operator that may
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be dynamic and nonlinear. If participants can regulate force independent of motion,

direct force control can be accepted as a plausible schema for human physical interac-

tion. Conversely, if humans are unable to decouple force from motion, an alternative

hypothesis is ‘indirect force control’. With indirect force control, a planned force 𝑓𝑝(𝑡)

may still exist in the forward path, but an impedance term 𝑍{·} is needed to relate

the difference between input motion 𝑥0(𝑡) and actual motion 𝑥(𝑡) to the output force

𝑓(𝑡) (Figure 6-1b). The core feature of indirect force control is that force depends on

motion.

Figure 6-1: (a) Direct force control. Applied force is a function of a planned
force that is independent of motion. (b) Indirect force control. Applied force is
a function of a planned force but also depends on motion. Further details are in the
Discussion section.

167



Figure 6-2: Experimental setup. (a) Top-down view of the experimental setup.
Participants were instructed to hold the handle of a moving robotic manipulandum
and apply a constant force in the direction of the robot’s motion. The elliptical path
of the robot endpoint is displayed on the figure for clarity. However, participants
did not see any visual display of the robot path. (b) Robot handle used to decouple
human wrist and robot end-effector orientations. (c) To provide visual feedback, the
projection screen displayed a stationary white bar indicating the target tangential
force of 5N and a moving red bar indicating the current applied tangential force.
Visual feedback was given during Block 1V and Block 2V. Otherwise, the screen was
black. (d) Elliptical trajectory of the robot endpoint (i.e., handle) in the horizontal
plane. The robot manipulandum moved counterclockwise and followed a velocity
profile that was in accordance with the two-thirds power law [Zago et al., 2018].
Tangential velocity is shown by color.
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The direct force control hypothesis leads to a testable prediction: Errors in contact

force will be independent of motion. Thus in this experiment, participants were in-

structed to apply a specific constant force on a robot manipulandum in its direction of

motion as it moved along an elliptical path. To give participants the best opportunity

to complete the task, the robot moved with a velocity profile that matched human

movement preferences, i.e., angular velocity scaled with curvature with a power of

2/3 [Maurice et al., 2018b,Zago et al., 2018]. Despite visual feedback and some prac-

tice, errors in exerted force persisted and were dependent on motion, suggesting (1) a

coupling of force and motion, and (2) the existence of an underlying structure in the

feedforward motion planning signal. Additional analysis of previous data from [Mau-

rice et al., 2018b] further validated the current results. In sum, this work showed that

interactive dynamics are significant and of particular concern in (1) quantification of

human performance and in (2) physical human-robot interaction.

6.2 Methods

6.2.1 Participants

Eleven healthy right-handed individuals (3 females, 8 males; ages from 19 to 35

years old) participated in the experiment for some compensation. All participants

signed a consent form which explained the experiments’ procedures. The experimental

protocol was approved by the Institutional Review Boards of Northeastern University

and the Massachusetts Institute of Technology.

6.2.2 Experimental Procedures

Task and Instructions

Participants were instructed to hold the handle of a moving robotic manipulandum

(HapticMaster) [Van der Linde et al., 2002] and apply a constant 5N force in the direc-

tion of robot motion (i.e., tangential direction) as it traversed an elliptical trajectory

in a horizontal plane (Figure 6-2a).
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Participants performed the experiment seated and held the robot through a ver-

tical handle which could pivot around its vertical axis; the pivot decoupled the robot

end-effector orientation and the participant’s wrist orientation (Figure 6-2b). Partici-

pants were positioned such that when holding the robot handle at the 270∘ position of

the ellipse (Figure 6-2d), the right upper arm hung downward slightly away from the

torso. This position aligned the forearm with the minor axis of the ellipse. The robot

height was adjusted such that the forearm was approximately parallel to the ground.

This resulted in an angle between the upper arm and forearm of approximately 90∘

(Figure 6-2a-b).

Visual Display

Participants sat approximately 2.2m in front of a projection screen (height: 1.8m,

width: 2.4m). In conditions with visual feedback, two horizontal bars appeared on the

screen (Figure 6-2c). A red horizontal bar moved vertically to indicate the tangential

force (averaged over 80ms) applied by the participant onto the robot; the stationary

white bar indicated the desired tangential force of 5N. Otherwise, the screen was

black.

Control of Robot Motion

The robot handle was commanded to move counterclockwise along an elliptical path

(major axis = 30cm, minor axis = 10cm) on a horizontal plane with a period of 3s

(Figure 6-2d). The velocity profile of the robot handle followed the so-called 2/3

power-law relation [Maurice et al., 2018b,Zago et al., 2018] between path curvature

and angular velocity (Figure 6-2d), decreasing in highly curved portions and increas-

ing in less curved portions. The position of the robot handle was controlled with a

Cartesian PD controller; a high proportional gain was used such that deviation from

the desired trajectory was negligible. The desired position of the robot was updated

at 700Hz, and an internal force control loop ran at 2kHz.
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6.2.3 Experimental Design

To assess the effect of practice and visual feedback on force control, participants

performed four experimental blocks; each block consisted of 15 trials. In each trial,

the robot continuously traversed the elliptical path four times with a period of 3s per

cycle; each trial lasted 12s. Blocks 1V and 2V presented visual feedback as shown

in Figure 6-2c. Blocks 1NV and 2NV did not present visual feedback. Participants

always performed the four blocks in the following order: 1V, 1NV, 2V, 2NV. In all

four blocks, participants were instructed to maintain a constant force of 5N in the

tangential direction. At the start of each trial, participants heard three short beeps

through a headset, after which the robot began to move. Between blocks, participants

were allowed to take a break if needed.

A familiarization block, referred to as Block F, preceded the four experimental

blocks. It also consisted of 15 trials of 12s each. There, participants were instructed

to maintain a constant level of force in the tangential direction of the robot motion.

The exact level of force applied was not specified and there was no visual feedback.

After Block F, participants were given 60s to familiarize themselves with the visual

feedback. During that time, the robot was in a stationary position and participants

could apply forces against the robot. In total, the experiment lasted just over an

hour.

6.2.4 Dependent Measures and Data Processing

The force that participants applied to the robot handle was measured at ∼560 Hz

with a 3 DoF force sensor mounted at the robot end effector. In each trial, the

tangential component of the force applied by the human to the robot was calculated

and resampled as a function of robot position along the elliptical path at a resolution

of 1∘.

Angular position along the elliptical path was defined using the eccentric anomaly1,
1The eccentric anomaly is one of three angles (or “anomalies") identified by Johannes Kepler in

his study of celestial mechanics to describe the position of a body that is moving along an elliptical
orbit [Kepler, 1609]. The other two angles are the true anomaly and the mean anomaly.
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𝐸, such that 𝐸 = atan(𝑎𝑦/𝑏𝑥), where 𝑎 and 𝑏 were half the length of the major and

minor axes of the ellipse, respectively. 𝑥 and 𝑦 were the magnitudes of the position

vector in the direction of the major and minor axes in Cartesian space, respectively.

For each trial, task performance was summarized by calculating the root-mean-

square (RMS) of force error. Force error was defined as the difference between the

actual tangential force and the target tangential force of 5N. The tangential force was

resampled as a function of robot position along the elliptical path at a resolution of

1∘. To avoid the potential influence of transient behavior, the first cycle of each trial

was omitted in the calculation of the RMS error.

6.2.5 Data Analysis and Statistics

All data were processed and statistical analyses were performed using custom scripts

in MATLAB. The significance level for statistical tests was 𝛼 = 0.05. Unless stated

otherwise, only data from the four experimental blocks (i.e., Blocks 1V, 1NV, 2V,

and 2NV) were included in the statistical analyses.

Performance Improvements

Prior to testing the effects of practice and feedback in the four blocks, performance

improvements were assessed within blocks across trials by calculating linear regres-

sions between RMS force error and trial number. Performance improvement was

indicated if the slope was different from zero, i.e., the 95% confidence interval of the

slopes did not include zero.

To determine where participants’ performance reached steady state, the regression

slopes between trial number and the average RMS force error across participants were

calculated iteratively for the last 15, 14, 13, trials and so forth until an insignificant

slope was found. This occurred when the linear regression was computed over the

last 9 trials (i.e. from trial 7 to 15). The lack of a significant slope with the RMS of

force error and trial number justified averaging measures over the last 9 trials within

a block.
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To assess whether visual feedback or practice across the 2 blocks influenced per-

formance, the block means of all participants were calculated over the steady state

portion of each block. These block means of RMS force error were submitted to a 2

(block) × 2 (feedback) repeated-measures ANOVA.

Existence of Motion-Dependent Force Errors

To assess the presence of motion-dependent patterns in the force error, the auto-

correlation function of force error (as a function of robot angular position) was calcu-

lated for each trial. The lag with the maximum peak in the auto-correlation function

(hereafter referred to as maximum lag) and its corresponding auto-correlation coeffi-

cient (maximum auto-correlation coefficient) were identified.

Two clusters were identified in the distribution of lags at maximum auto-correlation

and their means were determined. Trials where the maximum auto-correlation co-

efficient was less than 0.1 were omitted from the analysis of position dependency of

force error (4 out of 825 trials). From visual inspection, these low maximum auto-

correlation coefficient values resulted from isolated uncharacteristic changes in RMS

force error during the trial. They also occurred at lag values that were significant

outliers.

6.3 Results

6.3.1 Performance Improvements

Change in RMS Force Error Within Blocks

Inspection of the grouped time series of force error revealed that subjects showed a

consistent decline of the force error in the first part of Block 1V (Figure 6-3a). The

iteratively computed linear regressions between the average RMS force error across

participants and trial for the last 15, 14, 13, and so forth trials identified that the force

error values in Block 1V plateaued when calculated over the last 9 trials (i.e., from

trial 7 to 15). From trial 7 onwards the regression slopes did not differ from zero. As
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this initial drop of error seemed to be a result of familiarization, subsequent analyses

only examined the last 9 trials of all four blocks to evaluate the errors reached in each

condition.
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Figure 6-3: Mean RMS of force error across participants in each trial for (a)
all experimental blocks in the main experiment, and (b) Experiment 0N.
Yellow dots depict the average value across participants. The shaded region depicts
±1 standard deviation across participants. An asterisk (*) indicates a significant
linear relation between the mean RMS force error and trial number calculated across
participants for each block.

Effect of Practice and Visual Feedback on RMS Force Error Across Blocks

To statistically evaluate whether visual feedback and practice had a significant ef-

fect on the force error, a 2 (block) × 2 (feedback) repeated-measures ANOVA was

conducted. The force error revealed a significant interaction (𝐹1,10 = 15.74, 𝑝 =

2.66𝑒 − 03) as the mean RMS error decreased from Block 1V (𝑀 = 3.63N, 𝑆𝐷 =

1.12N) to Block 1NV (𝑀 = 3.30N, 𝑆𝐷 = 1.12N) and increased from Block 2V

(𝑀 = 3.08N, 𝑆𝐷 = 1.32N) to Block 2NV (𝑀 = 3.86N, 𝑆𝐷 = 1.96N) (Figure 6-

4a). However, neither the main effect of block (p = 0.99), nor the main effect of

feedback (p = 0.60) were statistically significant. Recall, all subjects completed the

experiment in order: Block 1V, 1NV, 2V, 2NV. Thus, the increase in mean RMS of

force in Block 2 was likely the result of cognitive or physical fatigue as the experiment

was quite long.
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Figure 6-4: Mean RMS of force error from the last 9 trials for (a) all experi-
mental blocks in the main experiment, and (b) Experiment 0N. Yellow dots
depict individual participants. Error bars depict ±2 standard errors of the mean.
The mean RMS of force error was significantly higher in all experimental blocks of
the main experiment compared to Experiment 0N (Table I).

6.3.2 Existence of Motion-Dependent Force Errors

Given this indifference to feedback and practice, the time series of force error were

inspected. As illustrated by the raw force data shown for a representative participant

in Figure 6-5, force error was periodic with pronounced peaks at multiples of 180∘ in

all blocks. To quantify this, the 𝑘-means clustering algorithm was used to assign the

maximum lag value of each trial to one of two clusters (𝑘 = 2) and then calculate the

centroid (mean) of each cluster. Two clusters were used because the within-cluster

sum of squares showed minimal improvement after the number of clusters increased

beyond 𝑘 = 2. The means of each cluster identified in the maximum lag data of trials

in Blocks 1V, 1NV, 2V, and 2NV were 179.3∘ and 359.3∘ (Figure 6-6a). The average

maximum auto-correlation coefficient was 0.43 (𝑆𝐷 = 0.13). Trials with maximum

lags of 360∘ indicate that the peaks in force error at half and full cycle were different,

while the maximum lag at 180∘ indicates that the two peaks in force error were

similar. Analyses of individual participants revealed that five subjects showed higher
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force applied at 180∘ and six subjects showed higher force applied at 360∘. Taken

together, these results indicate that force error strongly depended on the phase of the

oscillatory robot motion.

Given this pronounced periodicity in the experimental blocks that specified 5N

force, we also examined whether this periodicity was present spontaneously. The same

autocorrelation analyses were run on the trials of the familiarization block (Block F).

Figure 6-6b shows two clusters with mean values of 179.9∘ and 359.5∘. The average

maximum auto-correlation coefficient was 0.53 (𝑆𝐷 = 0.12). As illustrated in Figure

6-6b, these results give strong evidence for a spontaneous coupling of motion and

force.
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Figure 6-5: Raw force data in each block for a representative participant.
For each of the 5 blocks in the main experiment, plots of tangential force over robot
angular position are shown for the last 3 cycles of every trial. The tangential force
was resampled as a function of robot position along the elliptical path at a resolution
of 1∘. Each trial is depicted with a thin, colored line, and the average across all trials
is depicted with a thick, black line.
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Figure 6-6: Evidence of motion-dependent periodic force errors for all trials
in (a) Blocks 1V, 1NV, 2V, and 2NV of the main experiment, (b) Block
F of the main experiment (c) Experiment 0N. Histogram of lags of maximum
autocorrelation (referred to as maximum lag) values measured in units of robot an-
gular position. In all conditions, two clusters were identified. The solid lines indicate
the mean of each cluster, and the dashed lines depict ±1 standard deviation of each
cluster.
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6.4 Discussion

This work investigated humans’ ability to directly modulate force during motion.

Subjects were asked to apply a constant force on a robot manipulandum moving

along an elliptical path. The hypothesis of direct force control predicted that errors

in contact force would be independent of motion. Here, the force errors observed

throughout the entire main experiment depended on motion. Force error showed a

periodic pattern consistent with the periodicity of the path; it varied with motion.

After initial performance improvements, participants did not reduce force errors with

practice, even when visual feedback was provided. Motion-dependent patterns in

force error were also observed in Experiment 0N (i.e. Experiment 1B in [Maurice

et al., 2018b]), further validating the main results. These findings suggest that force

and motion are coupled as schematically shown in Figure 6-1b.

6.4.1 Force Error

In the main (5N) experiment subjects were given visual feedback of their tangential

force in two of the blocks (Figure 6-2c). In contrast to static tasks, where visual

feedback enables subjects to apply a constant force quite accurately [Massey et al.,

1992], the elliptic motion of the robot manipulandum in this study significantly com-

promised the subjects’ ability to regulate force. Subjects did not eliminate residual

errors, which varied periodically with motion.

Interestingly, the overall magnitude of force errors was significantly lower when

the target force was lower (Figure 6-4). There are several plausible explanations why

this occurred. One possibility is that greater force applied induced higher noise (i.e.,

signal dependent noise) [Osu et al., 2004]. Another possibility is that greater force

applied induced higher hand impedance [Lipps et al., 2020], which would amplify any

errors between the input and actual trajectories. This would provide further support

for indirect force control (Figure 6-1b).

Nonetheless, production of actual force 𝑓(𝑡) that equals input force 𝑓0(𝑡) is possible

using the indirect force control strategy of 𝑓(𝑡) = 𝑓0(𝑡) + 𝑍{𝑥0(𝑡) − 𝑥(𝑡)} when
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𝑍{𝑥0(𝑡)− 𝑥(𝑡)} = 0 (Figure 6-1b). This can be achieved in one of two ways: (1) zero

interaction dynamics and/or (2) a simultaneous prediction of the input2 trajectory

𝑥0(𝑡) that matches the actual trajectory 𝑥(𝑡). Thus, it is critical to note that if

motion-dependent force errors were not observed, it would be impossible to distinguish

between the direct and indirect force control strategies. However, the force error we

observed was dominated by motion dependency (Figure 6-5). Specifically, the force

error was periodic with maximum auto-correlation at lag corresponding to the 180∘

and 360∘ ellipse positions (Figure 6-6).

These motion-dependent force errors were also observed in both the familiarization

Block F of the main experiment, where subjects were instructed to apply a constant

tangential force, (Figure 6-6b) and Experiment 0N (Figure 6-6c), where subjects were

instructed to apply zero force. In both, subjects did not receive any visual feedback.

Despite some practice with and without visual feedback, the motion dependency

of the applied force persisted throughout the main experiment (Figure 6-5). This

robust observation suggests an underlying structure in humans’ ability to regulate

force during motion that limits the performance of this task.

6.4.2 Dynamic Primitives

Accurately controlling force would require the central nervous system to acquire an

‘internal model’ of the task with which to ‘compute’ predictive forward-path control

inputs. The theory of dynamic primitives proposes that motor behavior, with and

without physical interaction, is constructed using a limited set of primitive dynamic

behaviors that are the ‘building blocks’ of more complex actions [Hogan and Sternad,

2012, Schaal and Sternad, 2001, Schaal, 2006, Degallier and Ijspeert, 2010]. These

‘building blocks’ allow for a detailed plan of time-varying neuro-muscular activity

to be abstracted to the parameters of a limited set of stereotyped motor patterns.

Rhythmic movements can be generated by oscillations, one class of dynamic primi-

tives. The interactive primitive is mechanical impedance. The parameters of these
2This input trajectory has been referred to as the zero-force trajectory, as it is the motion that

would occur in the absence of external forces.
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‘building blocks’ may be encoded; this may facilitate human learning, performance,

and retention of complex skills.

Dynamic primitives do not preclude arbitrary patterns of force production. A

sufficiently accurate internal model might be used to compute both 𝑓0(𝑡) and the

corresponding 𝑥0(𝑡) (Figure 6-1). However, if the parameters of oscillatory primitives

used to plan the motion were limited, the time-course of force production would also

be limited. Periodic force errors in our experimental results suggest that the controller

appears to be content with ‘good-enough’ performance, which can be obtained using

a limited set of ‘primitive’ oscillations and a sufficiently low mechanical impedance.

Thus motor behavior constructed by dynamic primitives may result in performance

limitations – such as the observed imperfect, periodic force regulation reported here

(Figure 6-5).

Other results support this account. A combination of two oscillations (e.g. in two

degrees of freedom) generate the two-thirds power law relation between path curvature

and angular velocity. Previous studies of crank turning suggest that during physical

interaction humans generate an elliptical zero-force trajectory which exhibits a coin-

cidence of speed and curvature extrema [Hermus et al., 2020]. These observations are

also consistent with the work of [Maurice et al., 2018b,Schaal and Sternad, 2001,Huh

and Sejnowski, 2015,Hermus et al., 2020]. The smallest force errors in [Maurice et al.,

2018b] were observed when the velocity profile of the robot followed the two-thirds

power-law relation. Moreover, position-dependent errors are evident in the results of

other studies on constrained motion [Koeppen et al., 2017,Ohta et al., 2004,Russell

and Hogan, 1989]. However, to our knowledge this is the first time that position-

dependent force errors have been systematically quantified during a force regulation

task with substantial motion.

6.4.3 Limitations

In the main experiment, participants experienced the task for approximately one

hour (300 cycles). It is possible that participants could learn to better regulate their

force with additional practice (e.g., over multiple days). However, investigation of
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extensive practice was not the goal of our work. Humans regularly perform a variety

of novel forceful interaction tasks with ease and apparently without requiring long-

term practice. In fact, task performance slightly worsened at the end of practice in

the main experiment, possibly indicating that fatigue set in. Hence, this study aimed

to identify the performance that might be expected from intuitive and spontaneous

human-robot interaction.

Force errors might also be ascribed to poor perception of the robot’s motion.

However, the motion slowly (∼0.33Hz) followed a large elliptical path of 66.8cm in

circumference. Additionally, if errors in the perception of the robot’s motion led to

force errors, we would expect to see differences in error between the blocks that did

and did not have visual feedback. Figure 6-4 demonstrates that this was not observed.

Motion dependent deviations from the instructed force were persistent throughout the

entire main experiment (Figure 6-5 and 6-6a-b).

It is also possible that there may have been too much cognitive demand from

mapping the vertical feedback display to the horizontal force. While this argument

cannot be directly refuted from the results reported here, it is unlikely to account for

our main result. Figure 6-6b shows that subjects force error was motion dependent

even before visual feedback had been provided. In short, the position-dependence of

force error was consistent throughout the main experiment, despite the presence of

visual feedback.

6.4.4 Implications

Understanding the preferred control strategy employed by humans may guide the de-

sign of robot controllers to manage physical interaction. A roboticist may draw upon

the proposed ‘building blocks’ to program a simple controller to achieve a complex

task [Ijspeert et al., 2002, Stulp et al., 2012,Peters and Schaal, 2006]. For example,

a controller based on dynamic primitives has been used successfully (in simulation)

to control a 2 DOF arm to manipulate a dynamically complex whip with 50 DOF

in a targeting task [Nah, 2020]. Furthermore, the human body has a large number

of redundant degrees of freedom. Kinematic redundancy has commonly been viewed
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as a difficult challenge to overcome, especially if control is performed via conven-

tional optimization-based techniques. However, redundant degrees of freedom may

be controlled by superposition of mechanical impedance primitives. Remarkably, un-

like optimization-based methods, as the number of redundant degrees of freedom

increased, control based on the superposition of impedance primitives improved; in

effect, with greater redundancy control became easier [Hermus et al., 2022].

The account of humans’ motor control strategy proposed here may be especially

useful to design controllers for robots intended to interact physically with humans.

This paper demonstrated that errors in human force regulation may result from lim-

itations in the way humans compose motor actions (e.g., possibly through dynamic

primitives). These limitations should be taken into consideration in all applications in-

volving physical human-robot interaction, including amputation prostheses, assistive

exoskeletons, robot-aided rehabilitation, and physical human-robot collaboration.

6.5 Conclusions

In this work, we scrutinized a pervasive assumption: force and motion can be con-

trolled independently (an idea referred to here as direct force control). To examine

this assumption, subjects were asked to apply a constant force on a robot manip-

ulandum that moved along an elliptical path with a speed profile consistent with

the preferred pattern of human motion (the two-thirds power law). Results showed

that subjects were unable to control force accurately during motion, despite some

practice and the presence of visual feedback; errors in force were periodic in response

to the periodic motion of the robot. These results point towards an indirect force

control formulation (Figure 6-1b), in which commanded motion acts through mechan-

ical impedance to evoke force. Furthermore, the periodic pattern of path-dependent

force errors was consistent with commanded motion composed of oscillatory primi-

tives. Taken together, these findings suggest that a relatively simple mathematical

model combining dynamic motion primitives with mechanical impedance, as an ad-

ditional primitive, is competent to describe how humans control contact and physical
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interaction. A quantitative model is especially important for designing devices that

physically collaborate with humans.
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Chapter 7

Conclusions

To recap, humans excel at physical interaction with objects, even when those objects

introduce complex dynamics and impose kinematic constraints. Furthermore, human

dexterity exceeds that of most modern robots, despite the fact that the human neuro-

mechanical system is considerably slower than its robotic counterparts. Despite the

integral nature of this topic, physical interaction, a key to activities of daily living

(ADLs), has remained poorly understood. In part, this thesis demonstrated that, to

understand physical interaction the interactive dynamics of the limb must be taken

into account.

It has been proposed that, to achieve highly dynamic and dexterous performance

despite neuro-mechanical limitations, human behavior is composed of dynamic prim-

itives [Hogan, 2017,Hogan and Sternad, 2007,Hogan and Sternad, 2012]. These are

dynamic attractors (for example, limit-cycle oscillations) that emerge from nonlinear

interactions between neural and mechanical parts of the system and, once evoked,

require minimal continuous intervention from higher levels of the central nervous sys-

tem. In this theory, dynamic primitives are ‘building blocks’ of complex actions. If

dynamic primitives compose action, quantifiable limitations may be evident in human

motor control.

While it is fundamentally hard to prove hypotheses in human motor control, this

thesis demonstrated that the theory of dynamic primitives can descriptively account

for systematic patterns in constrained motion. Furthermore, the value of this hypoth-
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esis was demonstrated in robotics by the examples of managing kinematic redundancy

and force regulation.

In Chapter 2 [Hermus et al., 2020], a study of planar crank turning was presented.

A model of limb impedance was assumed, and the zero-force trajectory was computed.

The zero-force trajectory contained evidence consistent with the speed-curvature re-

lation reported in unconstrained motion [Lacquaniti et al., 1983,Huh and Sejnowski,

2015]. This suggests that our novel approach, estimating the zero-force trajectory,

reveals information about neural control.

In Chapter 3 [Hermus et al., 2020], further analysis was performed to understand

the structure present in the zero-force trajectory. We observed that when subjects

turned in different directions (CW vs CCW) the orientation of the zero-force trajec-

tory changed. This is consistent with control based on oscillations. However, in the

slow case subjects turned with a period of 13.33 seconds. At this speed the task could

not be perceived or executed as an oscillatory action [James, 1890]. In this case, we

observed an increased variability in the slow speed condition, suggesting a transition

from control using oscillations to control using submovements. These observations

are consistent with the hypothesis of dynamic primitives.

While insight can be gained by assuming the mechanical impedance,as in Chapter

2 and 3, direct measurement of mechanical impedance would allow for the hypothesis

to be further tested. In Chapter 4, we set out to measure mechanical impedance

during the task of crank-turning. Initially, time-based ensemble methods were em-

ployed. However, a key assumption – the stationarity of the noise processes – was

not justified. A ‘work-around’ was developed: (1) high-pass filter to remove the in-

fluence of the underlying time-varying zero-force trajectory; (2) assume impedance is

a function of configuration and identify a configuration-dependent ensemble. These

methods identified the impedance parameters (mass, damping, and stiffness) in the

normal direction with an error of less than 5% in the simulations and 20% in the

robot-only case. Measurements of a human subject yielded unacceptable errors, to

the extent that the sign of the stiffness was uncertain. However, in the tangential

direction, a fundamental limitation was discovered in practice: impedance may be
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so low that the natural frequency of impedance at any one configuration overlaps

the frequency content of the non-stationary noise process present in the zero-force

trajectory. The lack of frequency separation poses a fundamental challenge to system

identification of mechanical impedance.

In the crank-turning experiments the subjects’ wrist was braced, the elbow was

supported by a sling, and the shoulder was strapped to the chair. This confined the

task to two degrees of freedom. While this is advantageous for modeling, it drastically

simplifies human behavior. In Chapter 5 [Hermus et al., 2022], a robotic experiment

was designed to probe how kinematic complexity may be managed. We assumed the

impedance and programmed a Kuka LBR iiwa to interact with the InMotion planar

robot while it simulated a virtual circular constraint. Interestingly we found that

when the nullspace dimension increased, impedance superposition was comparable

to nullspace projection. This suggest that dimensionality may be a ‘blessing’ not a

‘curse’.

In Chapter 6 [West et al., 2022], we questioned an assumption so fundamental

it is often assumed. Can humans regulate force during motion? Unlike the previous

experiments in this thesis, in which subjects controlled motion under a kinematic con-

straint, this experiment prescribed motion and measured the force humans generated.

In the experiments, subjects were surprisingly bad at regulating force during motion

(with a target force of 5N subjects frequently exerted force as large as 10-15N). This

suggests that when designing a human-robot interaction paradigm, designers should

not expect subjects to precisely regulate force during motion. Moreover subjects’ force

errors correlated strongly with position. This indicates a coupling between force and

motion consistent with actions composed of dynamic primitives.

7.1 Areas of Potential Future Work

The system ID methods in Chapter 4 were applied in both the normal and tangential

directions. These cases represent two extremes. In the tangential direction, there was

no stiffness resisting motion. In this direction the stiffness must be generated by the
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human. However, in this task, the dynamics of the human limb result in a natural

frequency less than 1 Hz. This made it hard to achieve the frequency separation

required for this method. However, the normal direction was an approximation of

constrained motion. In this case, the addition of the robot dynamics to that of

the human dynamics increased the natural frequency of the combined system to 3-5

Hz. This higher stiffness of the interactive dynamics resulted in better estimates as

frequency separation was possible. This suggests future work may be successful in the

middle ground where subjects interact with simulated objects with a stiffness larger

than zero but less than the constrained task of 1500 N/m.

The feedforward force production of the InMotion presents quantifiable direction-

dependent hysteresis (see Appendix F). Experimentally, this caused problems with

the implementation of the system ID methods in the InMotion human experiments.

Two potential directions of future work are to (1) replace hardware components (e.g.

the actuator or amplifiers) or (2) develop compensation via control.

Previous work has developed compensators for human experiments on the InMo-

tion. In experiments designed to measure static limb stiffness, Palazzolo et al. [Palaz-

zolo, 2005,Palazzolo et al., 2007] estimated robot dynamics and removed it from the

combined human and robot dynamics. This enabled the estimation of the off-diagonal

frequency responses. A key aspect in the design of Palazzolo et al.’s experiment was

that the robot position was nearly static. The motion case, which involves posi-

tion dependent friction, is more challenging. Later work by Thorup developed a

sliding-mode control to compensate for the inertia of the InMotion during circular

constrained motion [Thorup, 2018]. However, this approach was sensitive and quan-

tifying its performance required care. Thus, it was not employed in the experiments

presented herein.

To perform experiments with substantial motion, a nonlinear compensator may

be required to eliminate the feedforward hysteresis. In an experiment with stochastic

perturbations, compensating for hysteresis may be more challenging than inertial

compensation. Model-based or learning methods may be able to achieve the required

performance. However, the design and validation of such a system is not trivial. The
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design of a mechanical system capable of exerting a precise force or impedance on the

InMotion during circular constrained motion (or even linear motion) may allow for a

control-based compensator to be validated prior to performing human experiments.

In this work the map from feedforward dynamics to measured displacements was

used to estimate the dynamics of the combined human and robot system. To in-

vestigate the human only system, future work may incorporate the force transducer

information. This makes it possible to change the interaction port. In this case, the

map from measured interaction force and position displacements could be used for

system ID.

An area of future work, related to the investigation of kinematic redundancy, is

to increase the nullspace dimension by increasing the joint-space degrees of freedom.

In the experiments, the nullspace dimension was increased by decreasing the task-

space degrees of freedom. However, the dimension of the nullspace between task

space and joint space can also be increased by increasing the joint degrees of freedom.

Preliminary simulation-based work showed that the result is robust to this application.

However, there may be value in connecting the theoretical understanding of an n-link

manipulator to the stiffness of a continuum mechanical beam. This may provide

valuable insight in understanding task conflicts in soft robotics.

7.2 Speculation

After spending the last 6 years studying human motor control, there is something

simple and beautiful about human physical interaction. The more I learn about

manipulation research in robotics, the more I am surprised by how the problems are

often approached.

While there has been growing success in end-to-end machine learning, when it

comes to human-like tool use or manipulation there are still strides to be made. This

makes me think that machines could benefit from an understanding of humans.

If it is not possible to end-to-end learn it all, is there a way to understand some

structures so that machine learning can be used to build upon those structures or to
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decide which structures work? In essence, could dynamic primitives be a basis for a

manipulation language? For example, consider letters: Note that we can spell quite

a few words with only a handful of letters. It seems like these letters could compose

simple actions such as moving the arm and closing the hand to pick up an object

– maybe these simple tasks are a type of word, say a verb. However, the order of

words is constrained by the rules of grammar. By analogy, the rules of physics enforce

that certain things are not possible or cannot be observed. Moreover, composing a

grammatically correct sentence does not imply that the sentence has meaning. You

can move a manipulator around all you want following the laws of physics but that

does not mean you achieved any type of goal.

Consider a simple perception example, estimating the pose of an object. Even

this can be a hard problem in manipulation. Here is an example from Russ Tedrake’s

class that got me thinking. It went something like this: consider a box that arrived in

the mail sitting on the floor. How many points do you need to find and represent it?

Maybe you need one point for the center. Maybe you need three points to specify the

orientation. Maybe you need 8 to represent all the corners. I could not help but think,

maybe you do not need any because you just woke up and want to go to the kitchen

to get coffee which has nothing to do with the box. This type of question seems silly.

It seems that, depending on what I want to do, the representation changes.

I think an important thing about the idea of perception is that the way we want to

act on representation matters. Thus, the action and perception primitive are somehow

related. Perception primitives may be analogous to perception/representation as

nouns and actions as verbs. In this case, it is consistent in the way that not all verbs

can act on all nouns. When it comes to action and perception, the understanding and

goal alter the way the same word is used. If we look at the sentence, ‘I took the dog

for a walk.’ The word walk means something on its own but its context is drastically

increased when we know it acts upon the word ‘dog’. This is analogous to the previous

perception discussion of the box. The number of key points or representation of the

box can be entirely different whether I want to avoid it, whether I want to pick it up,

or whether I want to open it.
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I can not help but wonder if this type of question may be important to consider

before trying to find new letters or even words. If we have an expert speller (an

engineer) who can correctly spell nearly any word (develop a fancy manipulation

task) it would take nearly 20 years of a career to develop the skills required to make

these words. Yet if the goal of this expert speller is to do philosophy, reason about

complex ideas by composing arguments with sentences and paragraphs–maybe even

read multiple books and have an understanding of these arguments–it may seem silly

to first spend 20 years teaching all of our philosophers to be expert spellers. Moreover,

people who are brilliant at philosophy may not be able to spell well.

Is there a way to tease out a language for manipulation/interaction? I might go

as far as to say that we know some of the letters and many advanced research labs

have been able to develop some of the words. I wonder, can we find and leverage

this language? If so, can individual small sub-pieces (words and sentences) be formu-

lated while following the grammatical structure and writing meaningful sentences? It

seems that even kindergarten-level reading may be enough to achieve great things.

Especially if this structure allows the system to sound out new words in order to

try to figure out how to spell or read words it has never seen before. I am not sug-

gesting modern robots should only be controlled solely by imposing absolute control

constrains, e.g. dynamic primitives. However, I do believe that control with dynamic

primitives may enable simple stable interaction which can be refined, via optimization

and learning. Given the value of a descriptive model of human motor control based

on dynamic primitives, areas of future work about which I am especially curious is

exoskeleton control as well as task and motion planning [Garrett et al., 2021].

7.3 Closing Remarks

As my experience at MIT draws to a close, I am filled with a sense of awe for the

truly remarkable design of the control strategies and the hardware that enable hu-

mans to accomplish so much more than survival. It is clear that, barring technological

advances in methodology or sensing, some of the elusive questions in human motor
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control may forever remain a mystery. However, it is also apparent that there are

countless critical future areas of inviting investigation. It is my hope that the ideas

herein will compose another building block in the foundation of the growing under-

standing of human motor control.
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Appendix A

Modeling a Two-Link Manipulator

Coupled to a Crank

Knowledge of the subject’s inertia is required to develop a model and simulate the

system. Inertial parameters were estimated based on the results of the cadaver studies

of Dempster [Miller and Nelson, 1973,Plagenhoef, 1971]. The arm and forearm plus

hand were denoted by 𝑙𝑖𝑛𝑘𝑠 1 and 𝑙𝑖𝑛𝑘 2, respectively. Each of the body segments

was described by the following parameters: length, 𝑙; mass, 𝑚; inertia, 𝐼; and center

of mass, 𝑐. The length 𝑙1 was the distance from the shoulder to the elbow. The length

𝑙2 was the distance from the elbow to the center of the fist. 𝐿𝑖𝑛𝑘2 was considered a

combination of the forearm and hand. The hand was assumed to be a point mass at

the end of the forearm. Limb parameters are reported in Table A.1. The inertia of the

crank about the pivot was 3.716× 10−3 kg/m2. Analysis of the mean and median of

all subjects’ inertial parameters showed that 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 1 was representative [Doeringer,

1999].

The model of the arm and crank system was constructed in the same manner

as performed by Ohta et al. [Ohta et al., 2004]. Figure A-1 displays the variables

and notation used in the development of the model. The system has one degree of

freedom; therefore, there is always a kinematic relationship which can be used to

transform from Cartesian position, 𝑥 = [𝑥, 𝑦]𝑇 , to joint position, 𝑞 = [𝑞1, 𝑞2]
𝑇 , and to
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crank position, 𝜃, where the center of the crank is defined as 𝑥𝑐 = [𝑥𝑐, 𝑦𝑐]
𝑇 .

𝑥 =

⎡⎣ 𝑙1𝐶1 + 𝑙2𝐶12

𝑙1𝑆1 + 𝑙2𝑆12

⎤⎦ =

⎡⎣ 𝑟 cos 𝜃

𝑟 sin 𝜃

⎤⎦+ 𝑥𝑐, (A.1)

The notations 𝑆1, 𝐶1 denote sin(𝑞1), cos(𝑞1) and 𝑆12, 𝐶12 denote sin(𝑞1+ 𝑞2), cos(𝑞1+

𝑞2). The radius of the crank is 𝑟, the damping of the crank is 𝑏𝑐, and the inertia is

𝐼. The upper arm denoted 1, and the forearm denoted 2 are described by length 𝑙1,

𝑙2, mass 𝑚1, 𝑚2, inertia about the 𝑧 axis 𝐼1, 𝐼2, and center of mass distance from

the joint axis 𝑐1, 𝑐2. The force on the handle is 𝐹 = [𝐹𝑥, 𝐹𝑦]
𝑇 , with the normal unit

vector, 𝑛 and tangential unit vector, 𝑒. The joint torque is denoted 𝜏 = [𝜏1, 𝜏2]
𝑇 .
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Figure A-1: Model of crank rotation task which displays the sign convention and
notation used in the computations.

From the sum of moments acting on the crank,

𝐼𝜃 + 𝑏𝑐𝜃 = 𝑟𝑒𝑇𝐹 (A.2)

194



summation of moments about the shoulder,

𝑀�̇� + ℎ = 𝜏 − 𝐽𝑇𝐹 (A.3)

and the kinematic relationship that equates the acceleration at the handle to the

acceleration at the hand,

�̈� = 𝐽𝑞 + 𝐽�̇� = 𝑟(𝜃𝑒− 𝜃2𝑛) (A.4)

a model of the system can be constructed. Parameters comprising these equations

include the mass matrix,

𝑀(𝑞) =

⎡⎣ 𝑚1𝑐
2
1 +𝑚2(𝑙

2
1 + 𝑐22 + 2𝑙1𝑐2𝐶2) + 𝐼1 + 𝐼2 𝑚2(𝑐

2
2 + 𝑙1𝑐2𝐶2) + 𝐼2

𝑚2(𝑐
2
2 + 𝑙1𝑐2𝐶2) + 𝐼2 𝑚2𝑐

2
2 + 𝐼2

⎤⎦ (A.5)

the centrifugal and Coriolis forces,

ℎ(𝑞, 𝑞) =

⎡⎣ −𝑚2𝑙1𝑐2𝑆2(2𝑞1𝑞2 + 𝑞2
2)

𝑚2𝑙1𝑐2𝑆2𝑞
2
1

⎤⎦ (A.6)

and the Jacobian relating unconstrained differential arm motions to hand motions.

𝐽(𝑞) =

⎡⎣ −(𝑙1𝑆1 + 𝑙2𝑆12) −𝑙2𝑆12

𝑙1𝐶1 + 𝑙2𝐶12 𝑙2𝐶12

⎤⎦ (A.7)

From Equations 9, 10, and 11 the relationship in Equation 15 can be shown

𝑅(𝜃)𝜃 +𝐻(𝜃, 𝜃) = 𝑟𝑒𝑇𝐽−𝑇𝜏 , (A.8)

where the configuration dependent damping is

𝑅(𝜃) = 𝐼 + 𝑟2𝑒𝑇𝐽−𝑇𝑀𝐽−1𝑒, (A.9)
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and the configuration dependent inertia is

𝐻(𝜃, 𝜃) = 𝑏𝑐𝜃 + 𝑟𝑒𝑇𝐽−𝑇{ℎ−𝑀𝐽−1(𝑟𝜃2𝑛+ 𝐽�̇�)}, (A.10)

From Equations 9, 10, and 11 we can also solve for 𝐹 ,

𝐹 = {𝐽𝑀−1𝐽𝑇 + 𝑟2𝐼−1𝑒𝑒𝑇}−1{𝐽𝑀−1(𝜏 − ℎ) + 𝐽�̇� + 𝑟𝜃(𝜃𝑛+ 𝑏𝑐𝐼
−1𝑒)} (A.11)
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Appendix B

Ensemble Statistics – Assumptions

and 1D Simulations

B.1 Review of Assumptions

A brief didactic review of system identification concepts will be presented in order to

develop the context of the proposed method, show that the new method is required,

and articulate how it is novel.

B.1.1 Probability Density Functions

When a value is not known with precision it can be treated as a random variable.

A random variable may take any value of the set {𝑥}. The random variable can be

characterized by a cumulative distribution function (CDF)

𝐹 (𝑥0) = 𝑃 (𝑥 ≤ 𝑥0) = probability that 𝑥 ≤ 𝑥0. (B.1)

If the random variable is continuous, it is often easier to work with the probability

density function (PDF) defined as the derivative of 𝐹 with respect to 𝑥.

𝑝(𝑥, 𝑡) =
𝜕𝐹

𝜕𝑥
(B.2)
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The probability that a random variable lies between two values is the integral of its

probability density function over the range between those values.

𝑃 (𝑥1 < 𝑥 ≤ 𝑥2) =

∫︁ 𝑥2

𝑥1

𝑝(𝑥)𝑑𝑥 (B.3)

The probability density function is also known as the likelihood function. A random

process is the extension of the idea of a random variable to that of a random function of

time. In principle, a random process may be characterized by the likelihood function

𝑝(𝑥, 𝑡)

𝑃 (𝑥(𝑡) ≤ 𝑥𝑜) =

∫︁ 𝑥𝑜

−∞
𝑝(𝑥)𝑑𝑥 (B.4)

In practice, partial descriptors are defined using the expectation operator. The first

moment is called the mean

𝜇(𝑡) = �̄�(𝑡) = 𝐸{𝑥(𝑡)} =

∫︁ ∞

−∞
𝑥(𝑡)𝑝(𝑥, 𝑡)𝑑𝑥. (B.5)

For the second and higher moments both the moment and central moment can be

defined. The central moment of a distribution measures the deviation from the mean,

while the moments of a distribution measure the deviation of the distribution itself.

The second moment is the mean square

𝑥2(𝑡) = 𝐸{𝑥2(𝑡)} =

∫︁ ∞

−∞
𝑥2(𝑡)𝑝(𝑥, 𝑡)𝑑𝑥. (B.6)

The second central moment is the variance

𝜎2(𝑡) = 𝑥2(𝑡)− �̄�2. (B.7)

This concept can be extended to multiple random variables. The joint likelihood

function 𝑝(𝑥1, 𝑡1, 𝑥2, 𝑡2) is defined as,

𝑃 (𝑥(𝑡1) ≤ 𝑥1𝑜 AND 𝑥(𝑡2) ≤ 𝑥2𝑜) =

∫︁ 𝑥1𝑜

−∞

∫︁ 𝑥2𝑜

−∞
𝑝(𝑥1, 𝑡1, 𝑥2, 𝑡2)𝑑𝑥1𝑑𝑥2. (B.8)
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Higher order joint likelihood functions, relating three or more times, may be defined

but are difficult to estimate. An especially important joint moment is the cross-

correlation defined as,

𝜑𝑥1𝑥2(𝑡, 𝜏) = 𝐸{𝑥1(𝑡)𝑥2(𝑡+ 𝜏)} =

∫︁ ∞

−∞

∫︁ ∞

−∞
𝑥1𝑥2𝑝(𝑥1, 𝑡, 𝑥2, 𝑡+ 𝜏)𝑑𝑥1𝑑𝑥2. (B.9)

Without exact knowledge of the probability density function, a statistic, an estimate

of the moments or central moments of a distribution, can be computed from a finite

set of observations. Given a sample, there are multiple ways to compute a statistic.

Two general approaches which will be discussed herein are: ensemble methods and

stationary methods.

B.1.2 Ensemble Statistics

An ensemble is an idealization where multiple, usually many, realizations of a system

are considered all at once. Each realization represents a possible state of the real

system. This approach implies that each realization results from the same underlying

likelihood function of the same random process.

Figure B-1: Ensemble of time history records defining a random process. The red,
blue, and yellows sample records represent different exemplary replications 𝑥𝑟.

Given an ensemble, an unbiased estimate of the mean and autocorrelation can be
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computed using an approximation of the expectation operator

𝜇𝑥(𝑡1) = lim
𝑁→∞

1

𝑁

𝑁∑︁
𝑘=1

𝑥𝑘(𝑡1) (B.10)

𝜑𝑥𝑥(𝑡1, 𝑡1 + 𝜏) = lim
𝑁→∞

1

𝑁

𝑁∑︁
𝑘=1

𝑥𝑘(𝑡1)𝑥𝑘(𝑡1 + 𝜏). (B.11)

B.1.3 Stationary Statistics

If the complete set of joint likelihood functions is time-shift invariant, such that

𝑝(𝑥, 𝑡 + 𝜏) = 𝑝(𝑥, 𝑡), 𝑝(𝑥1, 𝑡1 + 𝜏, 𝑥2, 𝑡2 + 𝜏) = 𝑝(𝑥1, 𝑡1, 𝑥2, 𝑡2), and so on, the random

process is strictly stationary. In practice, if the first and second moments are time-

shift invariant the process is considered wide-sense stationary. In this case an unbiased

estimate of the mean and autocorrelation can be computed by

𝜇𝑥(𝑡1) = lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

𝑥𝑘(𝑡)𝑑𝑡 (B.12)

𝜑𝑥𝑥(𝜏, 𝑘) = lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

𝑥𝑘(𝑡)𝑥𝑘(𝑡+ 𝜏)𝑑𝑡 (B.13)

The ergodic hypothesis posits that the expectation over an ensemble is the same

as the time-average of a single replication of the ensemble. That is, 𝜇𝑥(𝑘) = 𝜇𝑥 and

𝜑𝑥𝑥(𝜏, 𝑘) = 𝜑𝑥𝑥(𝜏). This assumption ties together the two approaches. In practice,

many complex physical systems can be studied under the ergodic hypothesis. This is

in part why many of the methods used to estimate human limb impedance have been

performed in static posture with an additional stabilizing stiffness term.
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B.2 Input-Output Relations

An impulse response function (IRF), is the output of a dynamic system to an impulse

input, a function defined by the Dirac delta distribution,

𝛿(𝑡) =

⎧⎪⎨⎪⎩+∞, 𝑡 = 0

0, 𝑡 ̸= 0

(B.14)

It is described as a function of time lag from impulse onset as ℎ(𝜏). Since the impulse

function contains all frequencies, the impulse response function defines the entire

linear time-invariant system. The goal of most time-domain non-parametric system

identification approaches is to identify one or more IRFs.

In steady state, the response of a linear time-invariant system to a sinusoidal input

is a sinusoid of the same frequency, which may have different magnitude and phase.

The frequency response function, 𝐻(𝑓), describes this input output relationship. It

completely characterizes a linear time-invariant system. There is a one-to-one map,

called the Fourier transform, between the impulse response function and the frequency

response function. Consider the linear time-invariant system with an impulse response

function ℎ(𝜏) and a frequency response function 𝐻(𝑓). Assume the system subject

to input 𝑢(𝑡) from a stationary random process 𝑢(𝑡) and produces an output 𝑧(𝑡),

which will also belong to a stationary random process 𝑧(𝑡). The output is given by,

𝑧(𝑡) =

∫︁ ∞

0

ℎ(𝜏)𝑢(𝑡− 𝜏)𝑑𝜏 (B.15)

Where ℎ(𝜏) = 0 for 𝜏 < 0 for physically realizable systems. The product 𝑧(𝑡)𝑧(𝑡+ 𝜏)

is given by

𝑧(𝑡)𝑧(𝑡+ 𝜏) =

∫︁∫︁ ∞

0

ℎ(𝛼)ℎ(𝛽)𝑢(𝑡− 𝛽)𝑢(𝑡+ 𝜏 − 𝛼)𝑑𝛼𝑑𝛽 (B.16)

Taking the expectation of both sides, substituting the output autocorrelation function
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𝜑𝑧𝑧(𝜏), and substituting the input autocorrelation function 𝜑𝑢𝑢(𝜏) yields,

𝜑𝑧𝑧(𝜏) =

∫︁∫︁ ∞

0

ℎ(𝛼)ℎ(𝛽)𝜑𝑢𝑢(𝜏 + 𝛽 − 𝛼)𝑑𝛼𝑑𝛽 (B.17)

Likewise, the product 𝑢(𝑡)𝑧(𝑡+ 𝜏) is given by,

𝑢(𝑡)𝑧(𝑡+ 𝜏) =

∫︁ ∞

0

ℎ(𝛼)𝑢(𝑡)𝑢(𝑡+ 𝜏 − 𝛼)𝑑𝛼 (B.18)

Again, taking the expectation of both sides and substituting the input output cross

correlation function 𝜑𝑢𝑧 yields,

𝜑𝑢𝑧(𝜏) =

∫︁ ∞

0

ℎ(𝛼)𝜑𝑢𝑢(𝜏 − 𝛼)𝑑𝛼 (B.19)

Assume the case where 𝑢(𝑡) can be chosen such that it is not correlated with disruptive

noise processes 𝑤(𝑡) (e.g. actuator or measurement noise). In this case, when the

expectation of Equation B.16 is computed, any additional noise terms would appear

as a cross correlation with the input, 𝜑𝑢𝑤(𝜏). By definition, we know that these

quantities are uncorrelated. Thus, the estimate of the second moment and second

joint moment is unbiased. This only leaves the input-output relation ℎ(𝜏) and suggest

a possibility of unbiasedly estimating the impulse response function.

B.2.1 Stationary Method for Estimating IRF

The impulse response of a damped system decays exponentially. For linear damped

systems, after 4𝜏𝑡𝑐 (where 𝜏𝑡𝑐 is the time constant of the systems slowest mode) the

system will remain within less than 2% of the steady state position. For further

discussion of system dynamics and time constants, please see [Bendat and Piersol,

2010]. This means that in practice, an impulse response function can be approximated

as a finite impulse response function. One way to perform this finite approximation is

to estimate the discrete impulse response function. This convolution can be written

as a matrix multiplication.
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⎡⎢⎢⎢⎢⎢⎢⎣
𝜑𝑢𝑧(0)

𝜑𝑢𝑧(1)
...

𝜑𝑢𝑧(𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜑𝑢𝑢(0) 𝜑𝑢𝑢(−1) · · · 𝜑𝑢𝑢(−𝑁)

𝜑𝑢𝑢(1) 𝜑𝑢𝑢(0) · · · ...
...

... . . . ...

𝜑𝑢𝑢(𝑁)
... · · · 𝜑𝑢𝑢(0)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ℎ(0)

ℎ(1)
...

ℎ(𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦ (B.20)

Using the Moore-Penrose pseudo inverse [Penrose, 1955] allows for the impulse

response function to be unbiasedly estimated [Bendat and Piersol, 2010]. If the

process is stationary such that the frequency response can be estimated the analogous

operation is defined in the frequency domain. Computing the one-sided spectral

density function yields,

𝐺𝑢𝑧(𝑓) = 𝐻(𝑓)𝐺𝑢𝑢(𝑓) (B.21)

The frequency response function can be unbiasedly estimated by

𝐻(𝑓) =
𝐺𝑢𝑧(𝑓)

𝐺𝑢𝑢(𝑓)
(B.22)

Note these relations can be defined and applied to the stationary statistics or ensemble

statistics presented above. For compactness, the stationary methods will not be

presented herein. A discrete implementation of the ensemble-statistics-based method

will be presented.

B.2.2 Ensemble Method for Estimating IRF

For every time step 𝑖, the relationship between noise-free input, 𝑢𝑟(𝑖), and the corre-

sponding noisy outputs, 𝑧𝑟(𝑖), is given by,

𝑧𝑟(𝑖) = 𝑦𝑟(𝑖) + 𝑛𝑟(𝑖) (B.23)

where 𝑦𝑟(𝑖) is the true output and 𝑛𝑟(𝑖) is additive white noise for the 𝑟𝑡ℎ realization

of the ensemble data. The discrete-time relationship between an input 𝑢𝑟(𝑖) and the

corresponding output 𝑧𝑟(𝑖) of a linear time-varying system is given by the discrete
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convolution equation,

𝑧𝑟(𝑖) = Δ𝑡

𝑀∑︁
𝑗=0

ℎ̂(𝑖, 𝑗)𝑢𝑟(𝑖− 𝑗) + 𝑛𝑟(𝑖) (B.24)

where ℎ̂(𝑖, 𝑗) is an impulse response function (IRF) estimate with finite lag length

𝐿 = 𝑀 + 1 where 𝑗 is a lag index. This assumes ℎ̂(𝑖, 𝑗) = 0 for 𝑗 > 𝑀 , which is true

for causal systems. In practice, the lag length 𝐿 should be long enough that the IRF

estimate settles to a near zero value. This suggests a finite impulse response function

is appropriate.

The Wiener-Hopf equation [Bendat and Piersol, 2010] can be obtained by multi-

plying both sides of Equation B.24 with 𝑢𝑟(𝑖 − 𝑗) and summing over all realizations

(𝑅),

1

𝑅

𝑅∑︁
𝑟=1

𝑧𝑟(𝑖)𝑢𝑟(𝑖− 𝑘) = Δ𝑡
𝑀∑︁
𝑗=0

ℎ̂(𝑖, 𝑗)
1

𝑅

𝑅∑︁
𝑟=1

𝑢𝑟(𝑖− 𝑗)𝑢𝑟(𝑖− 𝑘) + 𝑛𝑟(𝑖) (B.25)

To identify the system dynamics at a specific time 𝑖, the input-output relation can

be evaluated using the data across 𝑅 realizations and across 𝑀 time lags. Equation

B.25 can be rewritten with an input-output cross-correlation function estimate (𝜑𝑧𝑢)

at time 𝑖 and 𝑖 − 𝑘, and an input auto-correlation function estimate (𝜑𝑢𝑢) at time

𝑖− 𝑘 and 𝑖− 𝑗,

𝜑𝑧𝑢(𝑖,−𝑘) = Δ𝑡

𝑀∑︁
𝑗=0

ℎ̂(𝑖, 𝑗)𝜑𝑢𝑢(𝑖− 𝑘, 𝑘 − 𝑗) (B.26)

A matrix expression can be constructed by changing the lag index 𝑗 and 𝑘 from 0

to 𝑀 , where Φ̂𝑢𝑢(𝑖) ∈ R𝐿×𝐿 matrix and Φ̂𝑧𝑢(𝑖) ∈ R𝐿×1 vector. In this case the

IRF estimate, ℎ̂(𝑖), can be computed using a Moore-Penrose pseudo-inverse matrix

operation.

Φ̂𝑧𝑢(𝑖) = Δ𝑡Φ̂𝑢𝑢(𝑖)ℎ̂(𝑖) (B.27)

ℎ̂(𝑖) = Δ𝑡Φ̂𝑢𝑢(𝑖)
−1Φ̂𝑧𝑢(𝑖) (B.28)

The IRF estimates which result from this matrix inversion are noisy. In practice, the

206



IRFs are filtered in both the arguments – lag and time. This approach does require

that the system is stable such that the impulse response declines to zero given a

computationally tractable value of lag. This is a nonparametric method, which means

that the estimation of the IRF requires no further assumption of structure in the data

– other than linearity. Visual inspection can provide valuable insight into the system

order and types of linear models which may describe the response. If parametric

measures are required, once an IRF estimate is produced, system structure can be

assumed and a model can be fit to estimate the parameters such as mass, damping,

and stiffness.

In practice, a process that is nonergodic, can sometimes be studied under a subset

of conditions. This subset is frequently chosen as a compromise between providing

insight, while minimizing bias in the statistics (e.g. estimating stiffness in multiple

static postures instead of during motion [Mussa-Ivaldi et al., 1985]). In other cases

this is not possible. A second approach is to post-process the data, such that the

statistics are unbiased. This will be explored in the following examples.

B.2.3 Example – Time-Varying 𝑥0(𝑡) and Constant 𝑍

One way to violate the assumption of stationarity is to try to identify a Norton-type

network in the impedance operational form

𝑓 = 𝑍{𝑥𝑜(𝑡), 𝑥(𝑡)} (B.29)

where the impedance is constant in time. One of the simplest systems to exhibit this

behavior may be,

𝑚�̈� = 𝑘(𝑥0 − 𝑥) + 𝑏(�̇�0 − �̇�) + 𝑢 (B.30)

a mass, spring, and damper system with a force acting on it. In this case, 𝑥0(𝑡),

the end of the spring, is strictly a function of time. The perturbation force 𝑢(𝑡) is a

zero-mean random perturbation. This is an example of a multi-input single-output

system with non-stationary input 𝑥0(𝑡) and stationary input 𝑢(𝑡). One approach to
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understand input-output relations is using the Laplace transform.

𝑋(𝑠) =

(︃
𝑏𝑠+ 𝑘

𝑚𝑠2 + 𝑏𝑠+ 𝑘

)︃
𝑋0(𝑠) +

(︃
1

𝑚𝑠2 + 𝑏𝑠+ 𝑘

)︃
𝑈(𝑠) (B.31)

When these inputs pass through the linear system, the output 𝑥(𝑡) will be non-

stationary. However, in this case the violation of stationarity has a particular struc-

ture. An approach to remove the nonstationary influence of 𝑥0(𝑡) is to compute the

mean across the ensemble

�̄�𝑘(𝑖) =
1

𝑅

𝑅∑︁
𝑟=1

𝑥𝑟(𝑖) (B.32)

and subtract it (see Figure B-2 middle vs. right). This removes the influence of

𝑥0, leaving only the input-output relation between the perturbation and measured

position 𝑋(𝑠)/𝑈(𝑠). This estimate has zero mean and constant variance, due to the

deterministic nature of the system dynamics. The estimate is stationary in the wide

sense. Furthermore, the underlying random process is also a function of time. This

result satisfies the ergodic assumption. Either ensemble or stationary methods can

be used to produce an unbiased estimate of the dynamics in the form of an impulse

response function or frequency response function. Below is an example using the

ensemble methods to estimate the IRF.

Simulations were performed at a frequency of 200 Hz, a duration of 2 seconds,

a lag length of 0.2 seconds, and 300 realizations. The mass was 1 kg; the damping

was 40 Ns/m, and the stiffness was 2500 N/m. In practice, 𝑥𝑟 cannot be measured

exactly. For this reason, the noisy measurement of position will be denoted as 𝑧𝑟.

The amplitude of the zero-mean Gaussian additive noise was chosen to result in

a signal to noise ratio of 9 dB between 𝑥𝑟 and 𝑛𝑟. The perturbation 𝑢𝑟 switched

between -1 and 1 N randomly, this produced a flat frequency spectrum up to 40 Hz.

The ensemble methods for estimating IRF, presented in the previous section, were

applied. The impulse response functions were averaged in the temporal direction with

100 ms windows.1

1The 𝑧𝑟(𝑖)− 𝑧(𝑖) is stationary in the time coordinate 𝑖. For this reason, averaging over all time,
not just a local 100 ms window, could have been easily justified. Alternatively, this same estimate
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For each time step 𝑖, the best fit second order impulse response function ℎ𝑚𝑜𝑑𝑒𝑙(𝑖)

was fit by minimizing the mean squared error between ℎ̂(𝑖) and the model using

a bound-constrained optimization. This model is described by the parameters for

mass �̂�(𝑖), damping �̂�(𝑖), and stiffness 𝑘(𝑖). To quantify the model fit the %𝑉 𝐴𝐹𝐼𝑅𝐹

between ℎ̂(𝑖) and ℎ𝑚𝑜𝑑𝑒𝑙(𝑖) was assessed.

%𝑉 𝐴𝐹𝐼𝑅𝐹 (𝑟) = 100×

(︃
1−

var
(︁
ℎ̂(𝑖)− ℎ𝑚𝑜𝑑𝑒𝑙(𝑖)

)︁
var
(︁
ℎ̂(𝑖)

)︁ )︃
(B.33)

The simulated system behavior is presented in Figure B-2. Note, in the middle and

right panels of Figure B-2, that the subtraction of the mean across the ensemble

removes the influence of the time-varying 𝑥0. In Figure B-3, the IRF estimates with

respect to time and lag are presented. Lastly, in Figure B-4, the estimates and

variance-accounted for are presented and compared.

Figure B-2: (left) Example force perturbation. (middle) The measured position is
denoted 𝑧𝑟. Each 𝑟𝑡ℎ realization was represented by a different color line. The mean
of 𝑧𝑟(𝑖) over replications was the thick black line. (right) Measured position with
mean subtracted, 𝑧𝑟 − 𝑧.

could have been performed with a stationary statistic as well. However, this analysis was chosen for
the sake of consistence with future examples.
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Figure B-3: The red dots represent the impulse response function estimates ℎ̂ as a
function of time. The blue lines represent the best fit IFR model, ℎ𝑚𝑜𝑑𝑒𝑙. Note, for
the sake of visualization, every 10𝑡ℎ estimate in the time direction was plotted.

Figure B-4: (Left) Blue dots represent the estimated parameters of ℎ𝑚𝑜𝑑𝑒𝑙. The dashed
black lines represent the known values. (Right) The percentage variance accounted
for %𝑉 𝐴𝐹𝐼𝑅𝐹 .

B.2.4 Example – Time-Varying 𝑥0(𝑡) and Time-Varying 𝑍(𝑡)

If the system has a time-varying 𝑥0(𝑡) and a time-varying impedance 𝑍(𝑡), the mean

across realizations can still be computed and subtracted. This yields an ensemble

of signals with zero mean and time-varying second moment. However, the time-

varying second moment violates the stationarity assumption. This precludes the use

of the stationary methods for computing unbiased statistics. However, this does not
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preclude the use of ensemble methods. The ensemble method has been the key to the

identification of ankle impedance [Lortie and Kearney, 2001,Ludvig et al., 2011,Lee

and Hogan, 2015,Guarín and Kearney, 2017,Guarin and Kearney, 2018].

The same simulation methods from the previous section were applied. However,

in this case, the impedance changed as a function of time such that,

𝑘(𝑡) = 2500 + 500 sin(𝜋𝑡) (B.34)

𝑏(𝑡) = 40 + 10 cos(𝜋𝑡) (B.35)

with units of N/m and Ns/m respectively.

In this case, it is clear from Figure B-5, that subtracting the mean over replications

results in a zero mean signal. However, the variance changes with respect to time.

Thus, this signal is not stationary. For this reason, ensemble statistics must be used

for the system identification.

In Figure B-6, it is qualitatively evident that the impulse response function varies

with respect to time. Despite this lack of stationarity, the estimates presented in

Figure B-7 are close to the expected value. Furthermore, the %𝑉 𝐴𝑅𝐼𝑅𝐹 was also high.

Consistent with previous works, the ensemble methods work well for identifying the

dynamics of a time-varying system in the presence of substantial noise. Unfortunately,

this was not directly applicable to upper limb crank turning.

Figure B-5: (Left) Example force perturbation. (Middle) The measured position
denoted 𝑧𝑟. Each 𝑟𝑡ℎ realization was a different color line and the mean of 𝑧𝑟 over
replications is the thick black line. Clearly, the perturbations do not account for the
majority of the variance in the signal. This is because of the time-varying 𝑥0. (Right)
Measured position with mean subtracted, 𝑧𝑟 − 𝑧.
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Figure B-6: The red dots represent the impulse response function estimates ℎ̂ as a
function of time. The blue lines represent the best fit IFR model, ℎ𝑚𝑜𝑑𝑒𝑙. Note, for
the sake of visualization every 10𝑡ℎ estimate in the time direction was plotted.

Figure B-7: (Left) Blue dots represent the estimated parameters of ℎ𝑚𝑜𝑑𝑒𝑙. The dashed
black lines represent the known values. (Right) The percentage variance accounted
for between %𝑉 𝐴𝐹𝐼𝑅𝐹 .
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Appendix C

Evidence of Brownian Noise – Static

Posture

This work reports evidence of Brownian Noise in static human upper limb control. It

is not currently published. This work was done in collaboration with Rika Sugimoto

Dimitrova and Federico Tessari.

C.1 Introduction

To ensure the observation of drift present in the mechanical crank-turning experiments

was not an artifact, a simple experiment was developed to determine if Brownian noise

was present in the control of the upper limb even in an extremely simple case.

C.2 Methods

One healthy right-handed male subject participated in the study. The subject did not

report any biomechanical injury to their arm nor any neurological problems. Prior

to participating in the study, he was informed about the experimental procedure

and signed the informed consent document approved by MIT’s Institutional Review

Board. In this experiment, the subject was instructed to hold the handle of the

InMotion robot at a constant position for 10 minutes. During these experiments the
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elbow was supported by a sling, the wrist was braced, and the hand was occluded

from view consistent with the prior crank-turning experiment presented in Chapter 2

and 3. Position was measured by the encoders of the InMotion robot. The actuation

torque was set to zero. Experiments were collected with and without visual feedback

provided on a display.

The data were re-sampled to a constant sampling frequency of 200 Hz. Then the

power spectral density of the position in the 𝑥 and 𝑦 direction was estimated using

Welch’s method [Welch, 1967] (11 windows with 50% overlap).

C.3 Results

Drift was visually evident in the position measurements with and without visual

feedback (see Figure C-1). Consistent with a Brownian noise process, a slope of -20

dB/dec was observed in the power spectrum (see Figure C-2).

Visual Feedback No Visual Feedback

Figure C-1: Raw position measurements from InMotion robot when a subject held
the handle for 10 minutes (left) visual feedback and (right) no visual feedback. Note
the scale is much smaller in the left visual feedback plot than in the right no visual
feedback plot.
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Visual Feedback No Visual Feedback

Figure C-2: Power spectral estimates for the (left) visual feedback and (right) no
visual feedback conditions are presented. The blue lines denote the 𝑥 direction and
red lines denote the 𝑦 direction. The region shaded in purple represents the region
above the 0.01 Hz high pass filter.

C.4 Discussion and Conclusions

Even in this simple experiment without instructed motion, drift consistent with that

of Brownian noise was present. This finding led to key insight in the design of the

system identification work (see Chapter 4).

Doeringer and Hogan [Doeringer and Hogan, 1998a] demonstrated that movement

intermittency was in the forward path and could not be bypassed. This observation,

that visual feedback does not eliminate drift, is consistent with their results.
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Appendix D

InMotion Robot–Inertial Model

This model was developed by Thorup and is presented in her Master’s thesis [Thorup,

2018]. The InMotion2 robot has four links, shown in Figure D-1. The motors are

located at the labeled motor axes and provide torque to links 1 and 4. The angle

of the ‘shoulder’ joint measured by the encoder in motor 1 is the angle between link

1 and the motor axis. Link 2 is parallel to link 4 so the angle of the ‘elbow’ joint

measured by the encoder in motor 2 is the angle between link 4 and the motor axis.

Figure D-1: Inertial model

The lengths 𝑙 and masses 𝑚 are presented in Table D.1. The variable 𝑟 is the

distance between the center of mass of the link and the joint closest to the motor axis.

The moments of inertia about the center of mass 𝐼𝑐 and the moments of inertia about

the joint closest to the motor axis 𝐼 for each component are calculated assuming that
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the links are uniform rods and the handle is a point mass. This yields the following

joint space mass matrix,

𝑀𝜃(𝜃) =

⎡⎣ 𝐼1 +𝑚2𝑙
2
1 + 𝐼3 (𝑚2𝑙1𝑟2 +𝑚3𝑙4𝑟3) cos(𝜃1 − 𝜃2)

(𝑚2𝑙1𝑟2 +𝑚3𝑙4𝑟3) cos(𝜃1 − 𝜃2) 𝐼2 +𝑚3𝑙
2
4 + 𝐼4

⎤⎦ (D.1)

Property link 1 link 2 link 3 link 4

link handle total

length (𝑚) 0.4064 0.5144 0.5016 N/A 0.4064 0.1555

mass (𝑘𝑔) 0.756 0.892 1.072 1.964 0.756 0.378

𝑟 (𝑚) 0.2032 0.2572 0.5016 0.3906 0.2032 0.0775

𝐼𝑐 (𝑘𝑔*𝑚2) 0.0104 0.0197 0 0.0488 0.0104 0.0007

𝐼 (𝑘𝑔 *𝑚2) 0.0416 0.0787 0.2697 0.3484 0.0416 0.0030

Table D.1: InMotion Link Properties
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Appendix E

InMotion Robot– Static Feed-forward

Force Production

E.1 Introduction

Prior to performing the virtual crank-turning experiments, tests were performed to

determine if the feedforward dynamics of the robot were sufficient or whether a dy-

namic compensation was required in the control.

E.2 Methods

In the experiment the robot end-effector was clamped in a vice (see Figure E-1).

Two types of feedforward force perturbations were applied. The first case, denoted

‘small’, applied a ±1.5 N perturbation in the 𝑥 direction and a ±0.5 N perturbation

in the 𝑦 direction. This is consistent with the amplitudes of the perturbations used

in Chapter 4 in the normal and tangential direction respectively. In the second case,

denoted ‘large’, the amplitude in both the 𝑥 and 𝑦 direction was ±5 N. Consistent

with Chapter 4, the amplitude of the perturbation switched randomly between the

positive and negative values. The frequency spectrum of the input perturbations was

flat up to 20 Hz. For each condition, measurements were recorded for 10 minutes.

Spectra were estimated using 330 hamming windows Each window was two seconds
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long. Magnitude and partial coherence estimates were computed consistent with the

methods of Bendat and Piersol [Bendat and Piersol, 2010].

Figure E-1: Picture of experimental setup used to quantify feedforward force produc-
tion.

E.3 Results

The magnitude of the multi-input multi-output relation between commanded force 𝑢

and measured force 𝑓 was quantified (see Figures E-2 and E-3). From 0.5 - 15 Hz the

frequency response of the system was almost flat. Moreover the magnitude was unity

for the diagonal terms and zero for the off-diagonal terms. In the frequency range

from 0.5-10 Hz the partial coherence was unity on the diagonal terms and close to

zero on the off-diagonal terms.
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Figure E-2: Magnitude of the relation between commanded force 𝑢 and measured force
𝑓 . Blue lines represent the small amplitude perturbations used in the experiments.
Red lines represented the large amplitude perturbations.
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Figure E-3: Coherence of the multi-input multi-output relation between commanded
force 𝑢 and measured force 𝑓 . Blue lines represent the small amplitude perturbations
used in the experiments. Red lines represented the large amplitude perturbations.

E.4 Discussion and Conclusions

Based on the input-output spectral estimates the feedforward force dynamics of the

InMotion robot are more than sufficient without compensation. In practice, a pertur-

bation of 5 N was reported to ‘feel’ disruptive to subjects. The partial coherence in

the small 𝑈 condition was not negligible in the 𝛾𝑥𝑦 case. However, for this application,

a partial coherence of less than 0.1 is more than acceptable. For this reason, in the

experiments, a normal perturbation of 1.5 N and a tangential perturbation of 0.5 N

were employed – consistent with the small 𝑈 condition.
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Appendix F

InMotion Robot–Hysteresis

F.1 Introduction

It was unclear why the inertial estimates of the robot alone were biased when per-

forming the virtual crank-turning experiment. A simple experiment was performed

to check the force production of the robot.

F.2 Methods

The experiment was performed in two subsets. In the first case, denoted ‘robot’, the

robot stiffness was set to 80 N/m. The 𝑥0 position was set to zero in both x and y

directions. The damping was also set to zero. The handle of the robot was moved

back and forth 3 times in the 𝑥 direction. The motion was performed by hand at a

period which was slow enough to be considered quasi-static (∼20 seconds/cycle).

In the second case, denoted ‘spring’, 3 springs were attached to the InMotion (each

with a stiffness of ∼80 N/m). The spring case served as a control. The three springs

were connected in parallel with the first two opposing the third (see Figure F-1). The

commanded robot force was set to zero. Again, the handle of the robot was moved

back and forth 3 times in the 𝑥 direction as done in the previous case. However, in

this case the external forces were applied by hand below the force transducer.

The horizontal position, 𝑥, was measured by the robot encoders. The force in
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the horizontal direction, 𝐹𝑥, was measured by the force transducer. In both cases,

the dominant behavior should be spring-like, resulting in a constant-slope line when

plotted as 𝐹𝑥 vs. 𝑥. Deviation from this behavior would suggest an artifact in either

the InMotion position measurement, force production, or force transducer behavior.

Figure F-1: Picture of the three springs connected in parallel with the first to opposing
the third.

F.3 Results

The results are presented in Figure F-2. In the spring case small variability was

observed in the force at a given position. This variability was ∼0.1 N, close to the

resolution of the force transducer. This deviation from idea behavior was considered

to be negligible. However, the InMotion displayed evidence of a hysteresis in force

production of ∼0.5 N.
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Spring Robot

Figure F-2: Plot of force transducer measurement vs. displacement measurement in
the 𝑥 direction. Blue represents the spring case and red represents the robot case.
(Top) Large scale view of total force vs. displacement. Zoomed in view of Figure
(bottom left) the spring and (bottom right) the robot. While the axes are translated
between the bottom left and bottom right the scales are the same.
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F.4 Discussion and Conclusions

In this experiment the springs which served as a control behaved as expected. This

measurement required both the position encoders and the force transducer – indicat-

ing that they both worked as expected. The experiments with the InMotion robot

clearly demonstrated a substantial hysteresis of ∼0.5 N for forces −8 N < 𝑥 < 8

N1. This range more than encompasses the force range experienced during the crank-

turning experiments where subjects exerted forces −4 N< 𝑥 < 4 N [Hermus et al.,

2022].

The virtual crank-turning experiment with force perturbations requires force ren-

dering at low amplitude forces. The force perturbations used in the experiments had

a magnitude ranging from 0.5 N to 1.5 N. With incorrect force perturbation and/or

impedance rendering of the crank dynamics the hysteresis could result in direction-

dependent errors on the order of 10-50%. This problem must be addressed before

virtual crank turning experiments with force perturbations can be successful.

1In other experiments, this hysteresis was consistently observed even at loads up to and beyond
loads of ± 30 N.
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Appendix G

Quantitative Analysis of the

Quasi-Static and Dynamic Speeds

Many of the differences between statically consistent and dynamically consistent

nullspace projectors will only be elicited if the end-effector task (Task 1) involves

significant accelerations with respect to the joint-space task of the robot (Task 2). To

gauge the degree to which Task 1 was dynamic with respect to Task 2, the principal

natural frequencies of the joint-space task of the robot were quantified.

For any given robot configuration, the local unforced mass-spring behavior of the

joint-space task can be approximated as follows:

𝑀(𝑞)𝜃 +𝐾𝑞𝜃 = 0 (G.1)

where 𝜃 = 𝑞 − Δ𝑞. In order to find the natural frequencies of this system, we can

assume solutions of the form:

𝜃 = 𝑎𝑖 sin(𝜔𝑖𝑡+ 𝜑) (G.2)

where 𝑎𝑖 represents a single mode shape, and 𝜔𝑖 represents the corresponding natural
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frequency. Substituting this into Eqn. G.1 yields:

(−𝜔2
𝑖𝑀 (𝑞) +𝐾𝑞)𝑎𝑖 = 0 (G.3)

Rearranging this yields:

𝑀 (𝑞)−1𝐾𝑞𝑎𝑖 = −𝜔2
𝑖 𝑎𝑖 (G.4)

This has the form of a generalized eigenvalue problem, with 𝑎𝑖 and −𝜔2
𝑖 being the

eigenvectors and eigenvalues of the matrix 𝑀(𝑞)−1𝐾𝑞. For each experiment, the 7

mode shapes and natural frequencies were computed at each time step. For all ex-

periments, the computed natural frequencies remained approximately similar across

revolutions. The computed natural frequencies were then averaged across time steps

and experiments. The natural frequencies of each mode, listed in ascending order,

were 𝜔𝑛 = [0.28, 0.38, 0.81, 1.09, 2.52, 3.65, 7.13] (Hz). The end-effector task frequen-

cies were 0.25 Hz for the fast case, and 0.0769 Hz for the slow case, which suggests

that in the fast condition, the response was dominated by the two lowest Task 2

natural frequencies. The slow condition was clearly quasi-static with respect to Task

2.
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Appendix H

Simulations of Redundancy

In this work the benefit of increasing nullspace dimension was clear. However, this

might have been a fortuitous accident of our experiment, performed with a particular

robot in a particular configuration. In order to determine if the effect of increas-

ing nullspace dimension was generalizable, planar simulations were performed which

superimposed an end-effector impedance (task 1) and joint-space impedance (task 2).

In the 0D nullspace condition, the task space consisted of the 𝑥, 𝑦, and 𝜃 directions

(𝑚 = 3). In the 1D nullspace condition, the task space consisted of the 𝑥 and 𝑦

directions (𝑚 = 2). Both the 0D and 1D conditions are graphically displayed in

Figure H-1 (top). In all cases the manipulator had three joints (𝑛 = 3). The total

length of the manipulator was 1 m and the joints were divided into three equal

segments. The total mass of all of the links was 1 kg. The links were assumed to be

thin rods. The stiffness parameters are reported in Table H.1. Here, 𝐽(𝑞)𝑥 ∈ R2×𝑛

maps the joint velocities �̇� ∈ R𝑛 to translational end-effector velocities, �̇� = [�̇�, �̇�]𝑇

while 𝐽(𝑞)𝜃 ∈ R1×𝑛 maps �̇� to rotational end-effector velocities, 𝜃. The torque control

laws for the 0D and 1D cases were:

𝜏0D = 𝜏𝑒⏟ ⏞ 
Task 1

+ 𝜏𝑞⏟ ⏞ 
Task 2

(H.1a)
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and

𝜏1D = 𝜏𝑥⏟ ⏞ 
Task 1

+ 𝜏𝑞⏟ ⏞ 
Task 2

. (H.1b)

The nominal joint configuration 𝑞0 was constant and is depicted in Figure H-1

(top). The task 1 horizontal position was constant (𝑥0 = 0.75m), the task 1 orienta-

tion (only used in the 0D nullspace condition) was constant (𝜃 = 0𝑜), and the task 1

vertical position was time varying (𝑦0 = 1
2
cos(2𝜋𝑡)). The simulation was run for one

cycle from 𝑦 = 0.5, to 𝑦 = −0.5, and back to 𝑦 = 0.5 with a period of 35 seconds

which ensured the system was moving quasi-statically.

From the trajectory of the end-effector seen in Figure H-1 (bottom left) it is

clear that the 1D nullspace condition resulted in a substantial decrease of task space

disruption. This is supported by the 𝑥 direction RMSE in Figure H-1 (bottom right).

Table H.1: Appendix H Controller Parameters. All non-diagonal stiffness and damp-
ing terms were zero.

Variable Values Units

𝐾𝑥 diag([500,500]) N/m

𝐵𝑥 0.1𝐾𝑥 N-s/m

𝐾𝜃 10 N/rad

𝐵𝜃 0.1𝐾𝜃 N-s/rad

𝐾𝑞 diag([5, 5, 5]) N-m/rad

𝐵𝑞 0.1𝐾𝑞 N-m-s/rad
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Figure H-1: Graphic depiction of a 3 degree-of-freedom manipulator with a task space
impedance controller super imposed with a joint-space impedance controller. A 3D
task space yields a 0D nullspace (top left). A 2D task space yields a 1D nullspace (top
right). The end-effector path when a cosine motion was tracked in the y direction is
shown on the bottom left. The position RMSE in the x direction was much larger
with a 0D nullspace than with a 1D nullspace (bottom right).
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Appendix I

Computation of Rotational

Displacements

Computation of rotational displacements requires care. The computation of the rota-

tional displacement 𝑢Δ𝜃 ∈ R3×1 are rigorously defined. Given three reference frames:

an inertial ‘base’ frame (Σ𝑏), a rotating reference frame aligned with the end-effector

(Σ𝑒) and a rotating reference frame aligned with the zero-force trajectory (Σ0) where

the rotation matrix describing the end-effector frame in base coordinates is defined as
𝑏𝑅𝑒 and the zero-force trajectory in base coordinates is defined as 𝑏𝑅0 the rotational

transformation between the two frames can be computed by

𝑒𝑅0 = (𝑏𝑅𝑒)
𝑇 (𝑏𝑅0) (I.1)

This rotation matrix was then converted to a quaternion representation. Given a

rotation matrix indexed as, 𝑅 = {𝑅𝑖𝑗, 𝑖 = 1, 2, 3, 𝑗 = 1, 2, 3}

𝜂 =
1

2

√︀
𝑅11 +𝑅22 +𝑅33 + 1 (I.2)

𝜖 =
1

2

⎡⎢⎢⎢⎣
sgn(𝑅32 −𝑅23)

√
𝑅11 −𝑅22 −𝑅33 + 1

sgn(𝑅13 −𝑅31)
√
𝑅22 −𝑅33 +𝑅11 + 1

sgn(𝑅12 −𝑅12)
√
𝑅33 +𝑅11 +𝑅22 + 1

⎤⎥⎥⎥⎦ (I.3)
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𝜖 =
1

2

⎡⎢⎢⎢⎣
𝑅32−𝑅23

4𝜂

𝑅13−𝑅31

4𝜂

𝑅21−𝑅12

4𝜂

⎤⎥⎥⎥⎦ (I.4)

The quaternion was normalized then the angle/axis representation was extracted

[Natale, 2003]. The angle of rotation was computed

Δ𝜃 = 2 cos−1(𝜂); (I.5)

and the unit vector representing the axis or rotation was computed,

𝑢𝑒 =
1

sin(Δ𝜃
2
)
𝜖 (I.6)

𝑢0 =
0𝑅𝑒𝑢𝑒 (I.7)
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