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Impact-Aware 
Dual-Arm 
Manipulation

This article presents an impact-aware manipulation framework 
and its application to logistics, where the challenges related to 
the booming of e-commerce have increased the need for faster 
and more flexible package handling solutions. Particularly, the 
proposed impact-aware framework addresses the problem of 
swiftly grabbing and placing objects in depalletizing tasks with 
dual-arm robotic systems. Impact-aware robotics leverages 
intentional collisions to achieve dynamic interactions and thus 
has the potential to be faster and more energy efficient than the 
state of the art based on quasi-static interactions with objects or 
environments. The generation of desired impacts (contacts at a 
nonzero relative speed), generally avoided in classical robotics, 
brings multiple challenges encompassing the generation of 
robust motions, managing the impact with the object, dealing 
with the physical constraints of the robotic systems, contact 
state sensing, and simulation of contact behavior. To tackle 
these challenges, we developed, within the European Union 
(EU)-funded project Impact-Aware Manipulation (I.AM.), 
impact-aware technologies that yield an integrated impact-
aware solution. The proposed framework exploits nonsmooth 
mechanics to provide robot–object–environment impact mod-
els; it uses dynamical systems (DSs) to generate nominal and 
contingency motions with intentional impacts; it leverages qua-
dratic programming (QP)-based control to provide motion exe-
cution with the ability to enforce hardware and safety 
constraints; it employs internal state sensing that does not 

require an external force 
transducer; and, finally, 
it develops an impact 
simulation environment 
that can handle batch 
simulations. This article 
highlights the benefits of 
the proposed approach in 
terms of speed (a 29% 
decrease in average task time) and energy efficiency (a 35% 
decrease) through a systematic comparison between classical 
grabbing and impact-aware swift grabbing and tossing. In 
summary, our article underscores the transformative potential 
of impact-aware technologies in revolutionizing robotic logis-
tics operations. An accompanying video is available at https://
youtu.be/0Tv-MxO0rG0.

INTRODUCTION
E-commerce, the process of buying and selling physical goods 
online, has revolutionized the global marketplace. With the 
world e-commerce market projected to surpass 7.9 trillion 
USD by 2027 [1], its influence on warehouse operations, par-
ticularly intralogistics—the internal movement of goods with-
in distribution centers [2]—is profound. In most warehouses, 
human workers are still responsible for picking and placing 
operations, where items are retrieved from pallets and trans-
ferred to conveyor belts, trays, or tote containers, a task com-
monly known as depalletization.Digital Object Identifier 10.1109/MRA.2025.3615262 
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Despite its superior dexterity and adaptability compared to 
automated systems, the current workforce struggles to meet 
the increasing demands of the industry [3]. Several challenges 
contribute to this issue: there is a growing scarcity of labor, 
and the tasks are physically demanding and repetitive, leading 
to workplace injuries.

There exist fully automated depalletizing solutions that 
frequently rely on specialized equipment or single robotic 
arms1 with tools adapted to the types of products to be depal-
letized. Specialized automated systems are convenient for 
high-volume processes with little variety in product types [2]. 
However, these systems have a considerably larger footprint 
compared to manual depalletizing solutions and exhibit lim-
ited flexibility in adapting to changing conditions or environ-
ments. An alternative approach is to use collaborative robots 

1Recently, industrial applications have included XYZ Robotics’ various depalletiz-
ing systems and Boston Dynamics’ Stretch robot. These products largely use power-
ful single-arm systems equipped with various suction cups.

(cobots) [4]. Nevertheless, cobot systems tend to have lower 
throughput compared to human operators, primarily due 
to their quasi-static interaction methods. In addition, cobots 
commonly use suction grippers, which are increasingly prob-
lematic as the industry shifts toward packaging materials that 
use less plastic and are more environmentally sustainable. 
Such limitations partly motivate the use of dual-arm solutions.

In the industry, current dual-arm solutions rely mainly on 
human operators. Not only are humans able to immediately 
adapt to perturbations or changes in their environment and have 
a small footprint, but they can swiftly make and break contact 
to manipulate objects, as illustrated in Figure 1. Such skills have 
been notoriously hard to replace with robotic systems.

However, in recent decades, robots that can better with-
stand physical interaction with the environment, including 
impacts, while providing accurate sensing and actuation capa-
bilities have been developed. This advance in hardware and 
control, as well as visual perception, presents an opportunity 
to alleviate this problem. A dual-arm robotic framework is one 
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such realization. A dual-arm robotic system has some advan-
tages compared to a single arm with suction cup or finger grip-
pers. First, it spares the need to create custom end effectors for 
different types of products [5]. Second, some objects, such as 
open-lid crates or parcels, are difficult to handle by means of 
single or multiple suction cup end effectors.

In robotics, the exploitation of impacts, generally studied in 
locomotion that deals with hybrid dynamic systems [6], is now 
drawing increasing interest in the manipulation of objects with 
nonnegligible masses [7]. Making contact swiftly (impact) 
and breaking contact dynamically (tossing) together have the 
potential to substantially speed up depalletization tasks, as 
they both eliminate the need for complete pauses of the robots 
when grabbing and releasing objects. In practice, several key 
challenges must be overcome to generate impact-aware solu-
tions with robots. These challenges include modeling, simulat-
ing and predicting impact behavior, producing robust motions, 
managing the impact while accounting for the physical con-
straints of the robot, and estimating the contact state.

CHALLENGES IN IMPACT-AWARE MANIPULATION
The current industry standard is to establish contact at a near-
zero relative speed to have smooth transitions. However, this 
comes at the cost of time and energy. In contrast, achieving 

swift contacts induces impacts. If the object to be manipulat-
ed is not fragile, the impact can be exploited. This article is in 
part inspired by the human worker’s ability to safely interact 
with objects at nonzero relative contact speeds, swiftly grab-
bing and tossing objects.

Yet, swiftly grabbing and tossing objects poses fundamen-
tal challenges.
1)	 Industry settings vary greatly, requiring solutions robust 

enough to account for differences in the box position, 
model, and timing.

2)	 Existing robotic systems are heavy and feature high gear 
ratios without modeling impact methods. Failure to 
account for impacts would result in excessively large forc-
es, potentially damaging the contents of the box.

3)	 Real systems have physical limitations (joint limits, veloc-
ity limits, torque limits, and so on) imposing constraints 
that must be satisfied in practice.

4)	 Estimating the state of the system, especially detecting 
contact and estimating forces, is a notoriously hard challenge 
without having explicit external force sensors, which are 
expensive and fragile.

5)	 There is a need for a versatile simulation environment that 
interfaces between a physics engine that is suited to deal 
with impacts and a robot control framework and that 
allows collecting data for multiple scenarios through batch 
simulations.

CONTRIBUTION
This article focuses on one industrial use case in logistics that 
would benefit from the exploitation of impacts. As illustrated 
in Figure 2, we consider swift pick-and-place operations in 
depalletizing tasks using dual-arm systems [8], [9], [10]. We 
summarize the key contributions of the I.AM. European con-
sortium in applying robot grabbing for logistics. Each key 
component was developed in isolation and has been individu-
ally published. In this article, we present an impact-aware 
framework, developed by integrating these individual compo-
nents, and we quantify the improvements observed compared 
to a state-of-the-art classical approach. Furthermore, to 
assess the contribution of each module, we conduct an abla-

tion study.
We demonstrate that an impact-

aware control architecture enables 
dual-arm depalletizing robots to exhib-
it humanlike dynamic manipulation 
abilities, adaptability, and robustness. 
This approach addresses the increas-
ing need for faster and more flexible 
package handling solutions. By incor-
porating these research contributions 
into a single demonstration, this article 
exemplifies how leveraging impact 
can reduce task time up to 29% for 
dynamic manipulation applications in 
logistics compared to standard robotic 
approaches.

Classical Impact Aware

Placing

Quasi-Static
Contact

Tossing
Placing

Quasi-Static
Contact

Tossing

Impact

FIGURE 2. In the classical condition, the robot makes contact quasi statically (no impact) 
and breaks contact quasi statically (places). In the impact-aware condition, the robot 
makes contact dynamically (impact) and breaks contact dynamically (tossing). Note that 
this is a dual-arm task. However, for visual clarity, the right robot has been subtracted from 
the images.

Nonzero
Contact Speed

Nonzero

Approach Making Contact Tossing

FIGURE 1. Schematic of the problem: Human workers swiftly 
grab and toss objects with ease, making and breaking contact at a 
non-zero relative velocity.
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Motivated by the challenges of depalletization, this 
article proposes a systematic evaluation of impact-aware 
manipulation in a task with a dual-arm robotic system 
(two Franka robots) that was used to dynamically grab 
boxes from a pallet. We demonstrate the effectiveness of 
the proposed approach in reducing task execution time 
and energy expenditure compared to quasi-static grabbing 
and placing.

In addition, as a result of the integration, resolution 
of associated challenges, and validation of impact-aware 
technologies, this article offers some recommendations 
and perspectives for the use of dual-arm impact-aware 
manipulation.

OUTLINE
After the introduction, this article is structured as follows. The 
“Methods” section consists of two parts. First, the integrated 
framework is introduced, with details on each of the individual 
integrated components. Second, the experimental method used 
to assess the performance of the integrated system is intro-
duced. The “Results” section is divided into two subsections: a 
qualitative summary of observed behavior and a quantitative 
assessment of performance evaluation metrics. Finally, the 
“Discussion” and “Conclusions” sections explore the implica-
tions of this work, concluding the article with recommenda-
tions for future perspectives.

METHODS
We begin with an overview of how each integrated com-
ponent functions and its interconnection in the overall 
control architecture. Then, we introduce each component 
individually: the pre-impact and postimpact motion, the 
reference adaptation for impacts, the constraint-aware 
controller, the contact state sensing, and the impact simu-
lation environment. Following this, the experimental 
methods are presented, and, finally, the performance 
evaluation metrics are described.

SYSTEM INTEGRATION
This article introduces an integrated architecture to tackle 
the challenges of impact-aware manipulation, including five 
key components: 1) a DS-based motion and force generator 
that addresses robustness challenges of dual-arm coordina-
tion, 2) a reference spreading (RS) module that removes 
unwanted impact-induced peaks in the input signals, 3) a 
low-level constraint-aware control utilizing a quadratic pro-
gram to account for the physical constraints of the robotic 
system, 4) a contact state sensing module used to detect 
impact and estimate contact forces, and 5) an impact simu-
lation environment employed to numerically model the 
impact map in a range of pre-impact configurations. A 
graphical summary of these integrated components is pro-
vided in Figure 3.
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FIGURE 3. Diagram representing the connection between the different components. Reference motion and force: the motion flow 
generated by the DS outside and within the modulated region. The motion of each robot is shaped within the modulation region such that 
it passes through the desired transitory state (here, an impact state) with the desired position and the direction of the desired velocity 
(see [8] for more details). Reference Spreading: a 2D example of postimpact reference adaptation for impact tasks (figure from [11]). 
The postimpact reference matches a pre-impact reference where both robots grasp the box with an upward velocity. Constraint-aware 
control: the impact-aware QP regulates the contact velocity in a modified search space to ensure that the postimpact state jumps are 
hardware affordable. State sensing: the robot joint torque sensors and an inertial model are used to estimate the external contact 
wrenches with a momentum observer. Impact simulation environment: RACK is a simulation environment developed for impact 
simulation, is compatible with mc_rtc, and can run batch simulations.
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DS-BASED MOTION AND FORCE GENERATION
Once the desired impact or tossing state has been defined in 
terms of the desired position and velocity that must be satis-
fied simultaneously, one needs to generate motions that can 
drive the robot toward such a desired state. To address this 
motion generation problem, unlike classical approaches 
based on motion planning, we propose a solution based on 
time-invariant DSs, which offers fast and time-independent 
replanning abilities and robustness to perturbations. More 
precisely, we adopt a modulated DS approach, where state-
dependent modulation functions locally shape the robot’s 
motion so that it passes through the desired impact or release 
states [8], [12]. This method generates motion toward an 
attractor located near the desired impact or tossing position, 
and when in its vicinity (within the modulation region), it 
reshapes the robot’s motion such that it aligns first with the 
desired velocity while moving toward the desired impact or 
tossing state.

In this work, the DS-based motion generation initially 
begins with the grabbing action and, upon impact, automati-
cally transitions to the tossing or placing action. Regarding the 
tossing task, [12] previously developed a method to determine 
the minimum release velocities of the object for given relative 
release positions given a learned inverse throwing map. Using 
these velocities, a kinematics-based bilevel optimization was 
employed to determine the associated feasible release states 
(positions and velocities) of the dual-arm robot for both fixed 
and moving targets.

In addition to controlling for impact, we also control the 
coordination of both robotic arms to ensure the success of the 
dual-arm grabbing task. A poorly coordinated system, where 
one arm reaches the object before the other, would lead not 
only to uncontrolled impact but also to failure of the post-
grabbing task. To achieve dual-arm coordination with the 
DS, we compute the cooperative coordinates—the absolute 
and relative poses between the two end effectors—based on 
the current and desired end-effector poses for each arm. We 
then define stable dynamics for these cooperative coordinates 
to ensure convergence to their desired values. This allows for 
coordinated control of absolute and relative motion, facilitat-
ing synchronized reaching and closing of the dual-hand aper-
ture. We couple the dynamics of relative motion to those of the 
absolute one to make the hand’s aperture closure dependent 
on the reaching task. Finally, we map the cooperative coordi-
nate dynamics back to the dual-arm end effectors. To ensure 
stable grasping of the object, a QP-based method was used 
for the online generation of contact forces that are consistent 
with the contact constraints. An illustration of the DS motion 
flow when grabbing with impact and tossing can be seen in 
Figure 3.

REFERENCE SPREADING
Performing motions with impacts results in instantaneous 
jumps in the robot velocity signals. If the pre- and postimpact 
velocity references do not capture this velocity jump correct-
ly, switching from the pre-impact reference to the postimpact 

reference results in a large velocity tracking error. As a con-
sequence, instant jumps of control input can lead to vibra-
tions or unstable behaviors as well as damage, and they can 
increase energy consumption. Therefore, the pre- and post-
impact velocity references are adapted in order to match the 
predicted postimpact velocity jump.

This article employs an RS approach, originally introduced 
in [13] and adapted in [11] to fit with time-invariant velocity 
references, such as those presented in the “DS-Based Motion 
and Force Generation” section. In this approach, numerical 
simulations using the open robotic simulation framework 
RACK and the commercial physics engine AGX Dynam-
ics (see the “Impact Simulation Environment” section) are 
performed with the system initialized in a range of possible 
impact locations, with velocities corresponding to the pre-
impact reference. The postimpact velocities resulting from 
these simulations are then saved and used to locally modify 
the postimpact velocity reference obtained from the DS-based 
approach. An example of this local modification for a 2D use 
case appears in Figure 3. Whenever the manipulated object 
is within a given distance from its initial position, a convex 
combination of the predicted postimpact velocity and the post-
impact DS is used as the postimpact reference. This results in 
a more efficient postimpact motion without input spikes at the 
time of transitioning to the postimpact reference.

In addition to this reference adaptation, three control 
modes are defined, following earlier work on RS, such as [10] 
and [11]. These modes are 1) a pre-impact mode, 2) an interim 
mode, and 3) a postimpact mode. The pre-impact mode is 
active before any impact is detected. This is to track the pre-
impact DS. As soon as the first impact is detected, we switch 
to the interim mode. The goal of this interim mode is to fur-
ther prevent control input peaks, especially when impacts are 
planned to be executed simultaneously. If the impacts instead 
occur in short succession due to tracking errors or uncertainty 
in the environment, the contact state is uncertain and rapidly 
fluctuating. This means that none of the pre-impact and post-
impact velocity references can be tracked reliably. The interim 
mode solves this by initially removing velocity feedback and 
gradually increasing the velocity feedback control gain over 
time while also gradually increasing the desired grasping 
force to promote contact completion. After a fixed time, when 
the impact event is assumed to be completed, a switch is made 
to the postimpact mode, where the adapted postimpact refer-
ence is tracked.

CONSTRAINT-AWARE CONTROL
To implement motion control and RS control motion, the 
physical constraints of the robotic system must be taken 
into account. This can be done using the mc_rtc2 control 
framework. This framework uses task space control formu-
lated as a quadratic program to generate desired joint 
accelerations, which enforces robot l imitations as  

2While this is not an exact acronym, it generally stands for multiconstraint real-time 
controller. More information is available at https://jrl-umi3218.github.io/mc_rtc/.
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constraints [14]. These accelerations are used to compute 
torques sent as input to the robot’s motor control. The QP 
constraints ensure that the robots do not violate joint limits 
and prevent (self-) collisions, while the cost function is cre-
ated using tasks that require tracking the reference motion 
and force. Additionally, a posture task is added to resolve 
kinematic redundancy if any.

As shown in [15], impact awareness (the ability to handle 
impact tasks safely) can be achieved in this QP-based frame-
work by reformulating and simply adding the task objectives 
and constraints associated with impact without introducing 
new decision variables. Although not integrated here, we refer 
the reader to [15] for more details.

CONTACT STATE SENSING
Since the RS approach, highlighted in the “Reference 
Spreading” section, uses impact detection in the switch 
policy between control modes, having a sensitive and 
robust impact detector is crucial. Force/torque sensors can 
be mounted between the robot flange and the end effector 
to accurately estimate the contact wrench at the end effec-
tor. However, incorporating external force/torque sensors 
into the robot will increase the complexity of the system, 
reduce the maximum payload, and limit the detection of 
external interactions with the robot flange. In our current 
system and scenarios, we are using seven-degree-of-free-
dom manipulators equipped with torque sensors in each 
joint. Using torque measurements and an accurate robot 
model, external contact wrenches are estimated using the 
momentum observer [16], without any additional hardware 
or sensors. To achieve accurate robot modeling and conse-
quently improve wrench estimation, the inertial parameters 
of the arm are identified using a linear matrix inequality 
approach [17], which employs generalized robot base 
parameters [18].

The detector utilizes the estimated wrench and the veloc-
ity at the end effector. The latter is estimated using position 
encoders at the joints and is provided by the Franka Control 
Interface.

Given an abrupt change in end-effector velocity, the core 
insight of the detector to achieve both sensitivity and robust-
ness is to trigger an impact detection only if a significant 
external force acts on the end effector in the same direction 
as the velocity change [10]. This in turn prevents false posi-
tive detection of impacts caused by an increased external force 
when contact is already established.

IMPACT SIMULATION ENVIRONMENT
RACK [19] is a simulation environment developed by Algo-
ryx in collaboration with the Joint Robotics Laboratory at 
CNRS-AIST and extensively tested by the Eindhoven Uni-
versity of Technology (TU/e). It uses a human-readable robot 
scene description language and can, among others, be used 
for open-loop simulations, simulations with external control, 
parameter identification, and synthetic data generation. 
Although the only physics engine supported at the time of 

publication was AGX Dynamics,3 the environment is 
designed with compatibility with other physics engines in 
mind, using dedicated plug-ins. AGX Dynamics is a discrete 
element multidomain simulation library based on nonsmooth 
multibody systems dynamics with dry frictional contacts and 
impacts, designed for real-time performance. It was chosen 
because it delivered good frictional contact and impact mod-
els and provided gravity compensation in simulations, similar 
to the Franka robots used in this article. A validation of simu-
lations with AGX Dynamics that were performed using the 
RACK framework against real-world experiments is present-
ed in [20]. This article demonstrates how we can estimate the 
jump in velocity caused by impacts between robots and the 
environment with the help of some of the features of the 
RACK framework. The so-called impact map was then vali-
dated against real-life experiments, showing only 3.1% aver-
age estimation error.

Through a communication protocol, simulations can be 
executed with synchronous robot control, and batch simula-
tions can be performed by using the ability to read and write 
data from and open HDF5 files. Within this article, the con-
trol interface feature is used to communicate with the mc_rtc 
control framework, allowing testing the controller used for the 
experimental validation directly in simulations. This allows 
for safe controller development as well as initial tuning of the 
control parameters. The batch simulation feature is used in 
the RS approach, highlighted in the “Reference Spreading” 
section and described in detail in [11], helping to alleviate 
undesired peaks in the input signals. In particular, it is used 
to determine the estimated postimpact robot velocity using 

3Available at http://www.algoryx.com/agx-dynamics.

(a)

(b)

0.5 kg 1 kg 1.5 kg

FIGURE 4. The experimental setup used to validate the proposed 
impact-aware dual-arm manipulation framework. (a) The robotic 
system. (b) The set of objects used for the systematic assessment 
of the system’s performance: 0.5-, 1-, and 1.5-kg boxes.
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the aforementioned validated impact map for a range of pos-
sible pre-impact states. Notice that these simulations assume 
the availability of a rigid model of the objects with which 
the robots interact, describing their inertia and dimensions. 
For many industrial applications, such as depalletization, as 
addressed in the “Introduction” section, this assumption is 
reasonable. If not available, (online) parameter identification 
is required before such simulations can be performed.

EXPERIMENTAL METHODS
To assess the benefits of leveraging impact, we performed 
experiments evaluating the performance of the swift dual-
arm pick-and-toss approach. Our “impact-aware” method 
was compared to a pick-and-place approach using quasistatic 
contacts, referred to as the “classical” method in this context.

The section begins by describing the experimental setup 
and conditions. Next, it outlines the key performance indica-
tors (KPIs).

EXPERIMENTAL SETUP
Two Franka robots are placed side by side, as in Figure 4(a). 
A soft pad, first used in [10], was attached as an end effector 
for each robot. It consists of a 3D-printed part with a layer of 
silicone to provide additional grip and impact damping, pre-
venting impact-induced damage to the hardware. A motion 
capture system (OptiTrack) was used to track the position of 
the box. Data were recorded at 1 kHz.

To systematically assess the performance of the pro-
posed impact-aware approach, we selected three boxes with 
different weights and dimensions. The first box, weighing 
0.5 kg, contained foam and rice, measuring [19, 18.3, 
18.9] cm. The second box, weighing 1 kg, was filled with 
cardboard and measured [18.7, 28.9, 18.5] cm. Finally, the 
third box, weighing 1.5 kg, was filled with fabric and mea-
sured [26.8, 36, 24.8] cm. These boxes were chosen to 
represent typical packaging encountered in industrial 
settings. These objects are displayed in the supplemen-
tary video.

In addition, we evaluated the robustness of the method 
using two boxes with varied contents. These included a box 
filled with juice containers, simulating a standard grocery 
store box, and another box containing a loose drill chuck and a 
water bottle to emphasize potential changes in mass distribu-
tion during the task. Furthermore, we conducted a test where 

the system grasped two adjacent boxes to evaluate its perfor-
mance under such conditions.

The considered dual-arm grab scenario involved several 
steps. Following a go command, both robots were steered by 
the DS toward the box to reach a desired impact speed at a given 
uncertainty margin prior to impact. This desired impact speed 
and contact uncertainty margin depend on the robot accelera-
tion limits and the accuracy of the box state estimate. Given 
the hardware and industry application, a contact uncertainty 
margin of 6.75 cm was used. After an impact with either robot 
is detected (using the impact detection scheme highlighted in 
the “Contact State Sensing” section) the controller transitions 
from the pre-impact mode to the interim mode, followed by 
the postimpact mode, as explained in the “Reference Spread-
ing” section. Here, a postimpact DS, locally modified to match 
the impact dynamics, is followed to lift the box. Here, there 
are two options. The first is to transit to a DS that “tosses” the 
box (releases the box with a nonzero velocity), and the second 
is to transition to a DS that “places” the box (releases the box 
at the final position with a quasi-static velocity). After the box 
reaches the goal, the robot returns to the initial position for 
another cycle.

For each combination of the five task conditions and three 
boxes (0.5, 1.0, and 1.5 kg), the grabbing was performed for 20 
trials. This resulted in 300 trials. Here are the five task condi-
tions considered (summarized in Table 1).
1)	 In the impact-aware task condition, the RS was active; 

the robot grabbed the box swiftly, resulting in impact; and 
the robot tossed the box to the goal by releasing the box 
with a nonzero relative velocity. This condition integrated 
all key components presented in this work.

2)	 In the RS-ablation task condition, the RS was not active.
3)	 In the impact ablation task condition, the robot made qua-

si-static contact with the box (contact speed of 0.1 m/s), 
and the RS was turned off. Thus, this condition removed 
the impact when making contact with the box.

4)	 In the task-ablation task condition, the robot placed the 
box at the desired position quasi statically. Thus, the robot 
did not dynamically break contact by tossing; instead, it 
placed the box at the target.

5)	 In the classical task condition, all three ablations were com-
bined. Thus, in this case, the RS was inactive, the robot qua-
si-statically made contact, and the robot quasi statically 
placed the box at the target. Thus, all conditions were “inac-
tive” when compared to the impact-aware task condition.

PERFORMANCE EVALUATION METRICS
In this article, we evaluate the performance of the proposed 
impact-aware dual-arm controller in comparison to state-of-
the-art dual-arm quasi-static control, referred to as classical. 
Additionally, we assess the system’s performance when indi-
vidual components are ablated. For evaluation, we consider 
the following KPIs. Methodologically, each of these parame-
ters is computed on the basis of estimates and thresholds. An 
important measure for detecting these states is the estimate 
of the time that the robot makes or breaks contact.

RS IMPACT TOSSING

Impact aware   

RS ablation  

Impact ablation 

Toss ablation  

Classical

A checkmark () denotes an active component.

TABLE 1. A summary of the task conditions.
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The task time (in seconds) is defined as the time from the 
time the contact is detected to the time the release is detected. 
This measure quantifies the time from pick to place/toss regard-
less of the robot’s reaching and retracting motion phases.

The cycle time (in seconds) is defined as the duration from 
the time the robot starts the task to when it returns to its initial 
position within a tolerance region of 10 cm. This metric mea-
sures the combined benefit of grabbing with impact and tossing.

The pre-impact time (in seconds) is computed to study 
the temporal benefit of making impulsive contact. It is defined 
as the time the robot end effector is within 10 cm of making 
contact with the box until contact with the box is detected.

The mean desired acceleration (meters per second 
squared) represents the velocity feedback signal calculated by 
the controller, which serves as a metric to indicate the presence 
and severity of unwanted impact-induced peaks in the control 
input signals. The mean desired acceleration is computed dur-
ing the 0.05-s time after impact, which coincides with the time 
frame where the interim mode defined while the RS frame-
work is active in the impact-aware task condition. Excessive 
spikes in the desired acceleration can excite vibration modes 
and lead to instability. Such spikes can also result in torque 
jumps exceeding the robot’s limitations, making it challeng-
ing for the QP to find solutions within the robot’s constraints.

The robot energy consumption (in joules) is defined as E 
and computed by

	 E t qi
T

i
i n

N

T x=
=

o/ � (1)

where the vertical bars denote the absolute value; n denotes the 
time sample index that corresponds to the instant when the 
robot’s motion starts; N denotes the time sample index that 
corresponds to the sample time where the box is released; the 
joint torque measured by the robot is denoted by ,x  where the 
constant time duration between samples is denoted by ;tT  and 
the joint velocity of the robot is denoted by .qo  The absolute 
values of torque and velocity were computed, this assumes the 
work done on the robot is not recovered 
(e.g., through regenerative braking) is 
consistent with [12]. 

RESULTS
This section provides results derived 
from benchmarking experiments con-
ducted at EPFL. The presentation is 
structured in distinct segments to 
facilitate clarity and comprehension. 
First, analysis of the qualitative behav-
ior for the different tasks is presented. 
These visual representations offer 
insights into the observed behaviors 
within these tasks. Subsequently, 
attention turns to the performance 
evaluation metrics. By juxtaposing the 
results of tasks, a comparative analysis 
among the conditions is facilitated. 

Finally, the section culminates with a presentation of results 
highlighting the robustness of the employed methodologies. 
This serves to underscore the reliability and efficacy of the 
experimental approaches employed. Supplementary material 
is available at https://doi.org/10.1109/MRA.2025.3615262, and 
a video is provided at https://youtu.be/2tk_pJEbDcY.

QUALITATIVE RESULTS
The velocity norm, from representative trials under both the 
classical and impact-aware conditions, is presented in Figure 5. 
This figure offers detailed insight into task dynamics. Both 
conditions exhibit an increase in speed as they approach the 
box for contact. However, in the impact-aware case, the norm 
of the velocity reaches approximately 0.4 m/s at the moment 
of contact with the box, consistent with an impact event. In 
contrast, the classical condition shows a decrease in speed to 
0.1 m/s at contact, with no significant discontinuity in veloci-
ty, consistent with its intended use as a control for quasi-static 
contact conditions. Following contact, velocity rapidly 
increases during the lifting phase. In the impact-aware condi-
tion, this lifting phase is notably shorter, and the box is 
released with nonzero velocity. Elsewhere, the classical con-
dition takes longer to reach the goal; as it approaches, it again 
decreases in speed to place the box at the target, evident in 
the discernible drop in velocity just after 1.0 s. Finally, both 
conditions exhibit a spike in speed as they return to the initial 
position. Notably, the impact-aware condition begins its 
return much earlier than the classical method.

Figure 6 gives the absolute value of the desired accelera-
tion, which is a good indication of unwanted input spikes, as 
addressed in the “Performance Evaluation Metrics” section. 
The desired acceleration is shown for the vertical (z) direction 
around the time of impact for the impact-aware case versus 
the RS ablation case. Results for this z direction are presented 
since, given the nonzero pre-impact velocity in this direc-
tion, the nonzero postimpact velocity in this direction can 
cause a sudden velocity tracking error and subsequent control  
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FIGURE 5. The single-trial comparison: velocity norm plots. The red line represents the 
impact-aware condition, while the blue line represents the classical condition.
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feedback error if not considered. The abrupt peak in the 
desired acceleration for the RS ablation case indicates such a 
sudden increase in the control effort that can lead to increased 
vibration, destabilization, and hardware damage. Instead, 
because of the RS approach taken in the impact-aware condi-
tion, this input peak is prevented, and the commanded accel-
eration gradually increases to the same steady-state level as 
the RS ablation case, away from the impact.

PERFORMANCE EVALUATION
The goal of performance evaluation metrics is to quantify the 
performance of the combined system and assess its efficacy. 
Below, we present the average task time, cycle time, pre-impact 
time, mean desired acceleration, and robot energy consump-
tion. These results are displayed graphically for the 1.5-kg box 
in Figure 7 (see “Landing Position”) and the results for all the 
boxes are listed in Table 2. 

In Table 3, the percentage differences between each task 
and the classical method are reported. The impact-aware con-
trol demonstrated superior performance across several metrics 
compared to the classical approach. Specifically, it showed 
reductions in pre-impact time (8%), mean desired acceleration 
(76%), task time (29%), and cycle time (14%), indicating faster 
task completion. A positive percentage value indicates that the 
impact-aware task outperformed the classical method in terms 

of speed. In addition, the impact-aware 
condition showed a notable decrease 
in energy consumption, with a reduc-
tion of 35% compared to the classical 
approach.

The task time was defined as the 
duration from the detection of contact 
with the box to the moment of release 
of the box. This metric served to quan-
tify only the advantage of tossing, as 
the benefit of achieving rapid impact 
occurs before contact. It is evident 
in Figure 7 that there is essentially a 
binary change in the time difference 
between conditions such that tasks with 

tossing active were more than 0.5 s faster.
Cycle time serves as a metric to quantify the overall time 

improvement of the combined system. Both the impact-aware and 
the RS ablation conditions emerged as the fastest. The advantage 
of making impulsive contact saved approximately 0.1 s, while the 
benefit of tossing also resulted in nearly 0.5 s of savings.

The pre-impact time metric aimed to quantify the time 
saved by initiating contact with the box at a nonzero velocity. 
We observed significant reductions in the percent difference 
between the classical and impact-aware task conditions (refer 
to Table 3 and Figure 7). It is crucial to note that this differ-
ence is dependent on the duration of movement at a velocity 
of 0.1 m/s before contact.

The desired mean acceleration served as a metric to quan-
tify the presence and severity of unwanted peaks in the control 
input signals. In Figure 7, it is clear that the tasks with spread-
ing of the reference (impact awareness and toss ablation) 
resulted in a substantially lower mean reference acceleration 
than in the cases without.

In the ablation study, several key aspects emerge from 
the results. First, in the ablation of RS, there is more than an 
approximately twofold increase in the observed mean refer-
ence acceleration between the RS and ablated RS conditions. 
This suggests that this control regime significantly benefits 
from the presence of RS, enabling the use of higher gains and 
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achieving better tracking performance without introducing 
peaks in the control inputs at the time of impact. Second, when 
impact was ablated, there was an increase in the pre-impact 
time. Third, when the toss was ablated, there was also a sub-
stantial increase in task time. Thus, each component of this 
design has been validated separately, supporting the reasons 
for their presence in the control framework.

ROBUSTNESS EVALUATION
To evaluate the robustness of the impact-aware system, experi-
ments were conducted using a broader selection of boxes. These 
tests included a box containing juice containers, a box housing a 
loose drill chuck and a water bottle, and simultaneous grasping 
of two boxes. The system was able to successfully grab and toss 
each of the three objects quickly and without failure.

DISCUSSION
In this article, we highlight the contributions of the different 
components used in impact-aware grabbing and tossing 
developed within the European consortium project I.AM, a 
collaborative effort involving CNRS, EPFL, TU/e, the Tech-
nical University of Munich, and Algoryx. The overarching 
goal of the I.AM. project is to advance robotics technology, 
particularly in logistics operations, through the integration of 
impact-aware technologies. Our work combines several 
research advancements, including motion generation with a 
DS, reference adaptation for impacts, constraint-aware con-
trol, contact state sensing, and a contact simulation environ-
ment. These aspects are pivotal in addressing challenges 

The landing position of the 1.5-kg box was calculated for the 
reported results. The standard deviation of the landing position 
for the impact-aware case (with a toss) and in the classical case 
(with a placing action) is reported in Table S1.

Landing Position

DIRECTION X (CM) Y (CM)

Impact aware 2.6 2.0

Classical 0.5 0.1

TABLE S1. The standard deviation of the final box 
position.

METRIC
BOX  
MASS (KG) IMPACT AWARE RS ABLATION IMPACT ABLATION TOSSING ABLATION CLASSICAL

Task time (s) 0.5 . .0 71 0 02! . .0 64 0 04! . .0 64 0 02! . .1 29 0 02! . .1 19 0 03!

1.0 . .0 83 0 05! . .0 79 0 02! . .0 76 0 03! . .1 24 0 08! . .1 17 0 03!

1.5 . .0 81 0 02! . .0 84 0 02! . .0 83 0 03! . .1 27 0 08! . .1 35 0 04!

Cycle time (s) 0.5 . .3 14 0 03! . .3 09 0 03! . .3 22 0 05! . .3 55 0 03! . .3 67 0 05!

1.0 . .3 08 0 09! . .3 11 0 05! . .3 21 0 03! . .3 40 0 14! . .3 65 0 05!

1.5 . .3 02 0 02! . .3 18 0 03! . .3 25 0 06! . .3 39 0 12! . .3 73 0 06!

Pre-impact time (s) 0.5 . .1 26 0 01! . .1 27 0 05! . .1 39 0 02! . .1 27 0 01! . .1 42 0 02!

1.0 . .1 17 0 01! . .1 17 0 00! . .1 32 0 02! . .1 19 0 02! . .1 39 0 03!

1.5 . .1 18 0 01! . .1 19 0 00! . .1 26 0 01! . .1 18 0 01! . .1 29 0 01!

Mean desired  
acceleration (m/s2)

0.5 . .3 83 0 22! . .16 19 2 99! . .11 86 0 55! . .4 66 0 19! . .18 66 0 32!

1.0 . .4 29 0 31! . .19 08 0 75! . .14 13 0 85! . .5 08 0 44! . .20 80 0 39!

1.5 . .4 61 0 26! . .21 85 0 97! . .16 02 0 95! . .5 74 0 15! . .22 40 0 43!

Robot energy  
consumption (J)

0.5 . .68 46 1 90! . .68 52 1 21! . .67 27 1 62! . .95 59 1 65! . .106 85 2 12!

1.0 . .66 92 5 00! . .68 29 2 46! . .62 97 2 78! . .91 56 8 46! . .102 99 2 24!

1.5 . .59 57 1 16! . .68 21 1 44! . .67 68 2 54! . .94 29 5 17! . .116 20 2 95!

TABLE 2. A summary of the mean and standard deviation of the metrics.

BOX TYPE

Average KPI 0.5 (kg) 1.0 (kg) 1.5 (kg)

Task time 41% 29% 40%

Cycle time 14% 16% 19%

Pre-impact time 11% 16% 8%

Desired acceleration 76%* 78%* 79%*

Robot energy 36% 35% 49%

This table includes results from the different boxes. Note that positive 
differences correspond to the case where the I.AM. condition outper-
formed the industry-standard condition. Furthermore, an asterisk (*) 
indicates that the difference between the mean desired accelerations 
was computed between the impact-aware and RS-ablation conditions.

TABLE 3. A summary of the percent difference in each 
KPI between the classical condition and the impact-
aware condition.
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related to robustness, executing impacts with heavy/highly 
geared robots, and controlling systems with physical  
constraints.

KEY RESULTS
Our platform demonstrates notable advancements, particular-
ly in achieving faster task completion and improved energy 
efficiency compared to conventional industry methods reliant 
on quasi-static contact.

For example, in the case of the 1-kg box, our pick-and-
toss task resulted in a 29% reduction in the average task time 
compared to the industry-standard place task. This substan-
tial efficiency gain highlights the potential of impulsive 
contact strategies to significantly minimize the duration of 
the task and improve the speed of logistics operations. Fur-
thermore, analysis of the average robot energy consumption 
revealed a 35% decrease in energy expenditure during the 
pick-and-toss task compared to the pick-and-place task, fur-
ther emphasizing the benefits of impact-aware technologies 
in optimizing resource utilization without compromising 
task performance.

Considering Figure 7, notice that the RS ablation case 
results in only a relatively small increase in the cycle time. 
However, as can be seen for the mean desired acceleration, 
the benefit from RS becomes apparent from the increase in 
the mean desired acceleration when RS is ablated, indicat-
ing a spike in the input signals that can induce vibrations and 
increase the forces on the robot and objects. This can in turn 
increase the likelihood of failed task execution and wear on 
the objects and robots and, thus, is not desired.

Notice that the time savings resulting from tossing are 
approximately 0.5 s per cycle, as seen in the task time plot in 
Figure 7, substantially outperforming the impulse pick action, 
which saved around 0.1 s per cycle, as seen in the pre-impact 
time plot in Figure 7. Although both strategies contribute to 
reducing the total cycle time, the magnitude of time saved 
by tossing is important given scenarios where the considered 
task permits such action. This disparity in time savings under-
scores the crucial role of tossing action in expediting logistics 
operations, particularly in tasks involving repetitive actions 
and large volumes of objects. For tasks requiring thousands or 
even millions of cycles, the cumulative time savings achieved 
by tossing or impulsively picking can be substantial, leading 
to significant improvements in overall operational efficiency 
and throughput.

The positive effect from the impulsive pick action could 
be further improved by ensuring that the impact directions 
and speeds of both arms are defined such that their net effect 
propels the object toward its desired postimpact state (the 
actual postimpact state depends on the properties of the col-
liding bodies). Inadequate impact directions would unnec-
essarily stress the object. This highlights the importance of 
an impact planner. Even if such a module has not been inte-
grated into this article, research is underway to develop a 
method for optimal impact states given an object’s postgrab-
bing manipulation task.

Regarding tossing, it is worth pointing out that mak-
ing decisions about when to toss an object or not (based 
on the predictability of the outcome and whether this 
is relevant for the task to be executed) is an ongoing 
research topic.

ASSUMPTIONS AND THRESHOLDS
In this article, we chose an impact velocity of 0.1 m/s and a 
contact uncertainty margin of 6.75 cm to comprise the quasi-
static condition. These parameters directly affect the reported 
time metrics. We want to clearly articulate that the advantag-
es of impact-based grabbing, as reported here, will decrease 
as box position certainty improves to allow for a smaller con-
tact uncertainty margin. In contrast, the advantages of impul-
sive contact grow in scenarios with greater uncertainty, 
where the RS method is particularly effective. As discussed 
in the “RS” section, the RS approach, especially its interim 
mode, is designed to manage positional uncertainty in the 
environment, as shown in [11], where experiments introduced 
up to 3 cm of artificial uncertainty. Therefore, under condi-
tions of higher positional uncertainty, the time savings from 
impulsive contact are expected to exceed the 8% improve-
ment reported here.

In this article, we used an OptiTrack motion capture system 
to measure the position of the box. It is important to note that 
this choice does not represent a fundamental limitation; a vari-
ety of pose estimation tools or methods could be employed to 
estimate the box’s pose in practice.

FRAGILE OBJECTS
One key insight derived from our work is the nuanced impact 
of moving into contact with nonzero velocity, contingent 
upon factors such as the precision of object modeling and the 
fragility of manipulated objects. Although precise object 
models enhance the benefits of impulsive contact, the 
approach was found to work quite well for real-world indus-
trial applications, even when modeling assumptions were vio-
lated. This demonstrates the advantages of this approach, 
particularly for resilient objects.

However, it is essential to acknowledge the inherent limita-
tions and considerations associated with impact-aware strate-
gies. The maximum allowable impact speed plays a crucial 
role, as excessively high impact velocities could lead to unde-
sirable consequences, especially for fragile objects. Therefore, 
a careful compromise must be maintained between the pre-
dictability of the behavior of objects and the potential impact 
forces to maximize the effectiveness of impact-aware control 
methods.

ROBUSTNESS
In this article, the selected boxes were intended to mirror 
objects commonly encountered in industrial settings. We 
conducted tests with various masses, sizes, shapes, and iner-
tial distributions, including objects that were not single rigid 
bodies. However, in our robustness setup, we limited our 
examination to boxes with a mass no greater than 2 kg. The 
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decision stemmed from the robot’s ability to impulsively pick 
and toss each object 20 times without failure.

The Franka robot’s maximum payload restricted the 
experimental objects. However, there are no theoretical 
limitations that prevent the application of this technol-
ogy to any torque-controlled robotic platform with larger 
torque limits, such as the Kuka IIWA. It is important to 
note that applying this technology to a system with lower 
torque limits effectively highlights the advantages of QP 
control frameworks, such as mc_rtc. Operating close to the 
hardware limitations of the robot represents a significant 
real-world challenge.

Notice that while the dual-arm soft-pad design proved 
effective for a broad range of objects, there are instances 
where it may not be ideal. For example, bins with handles 
(designed for lifting rather than grasping under pressure) 
present challenges. Their deformation and narrowing toward 
the top indicate a lack of structural integrity for compres-
sion-based grasping. In theory, these methods are limited 
to objects that can withstand compression-based grasping. 
Thus, the choice to investigate boxed objects was based on 
its application to industry.

Similarly, small or irregularly shaped soft objects wrapped 
in plastic may be better suited for single-gripper or suction cup 
gripper systems. Our experimental setup exhibited remark-
able robustness, enabling rapid grabbing and tossing of a wide 
array of objects.

Notice that the adoption of this technology does not 
preclude the use of other end effectors or robotic systems 
employing alternative grasping approaches for objects 
unsuitable for compression-based manipulation in indus-
trial settings.

PREGRASPING MANIPULATION
In this article, our concern was to measure the advantages of 
utilizing impact, enabled by integrating scientific knowledge 
into the dual-arm pick-and-toss task. Thus, we specifically 
targeted scenarios where the box was prepared for grasping. 
However, in depalletizing processes, preparatory actions, 
typically undertaken by human workers, are often necessary 
to position the box for grasping. Although aspects of pre-
grasping manipulation are underway, they remain an area of 
future work.

CONNECTION TO HUMAN RESEARCH
We would like to point out that humans can exhibit 
extremely low mechanical impedance at the hands or 
fingertips relative to current robotic systems. Thus, 
their solutions to handle fast contact are substantially 
different from those of a torque-controlled robot with 
large gear reductions. Although motivation comes from 
human behavior, the solution presented here is distinct 
from that of a biologically motivated controller. Thus, 
in this work, we specifically did not make comparisons 
to quantify the extent to which the robot behavior was 
humanlike.

SUMMARY
Our article underscores the transformative potential of 
impact-aware technologies in revolutionizing robotic logistics 
operations. By addressing challenges associated with conven-
tional quasi-static methods and leveraging controlled 
impacts, these technologies offer significant improvements in 
task efficiency and energy utilization, thereby paving the way 
for enhanced productivity and operational effectiveness in 
warehouse and distribution center environments.

CONCLUSIONS
This article highlighted the successful integration of 
impact-aware technologies and their application in logistics 
scenarios, with a specific focus on grabbing and depalletiz-
ing tasks involving dual-arm robotic systems. Through 
deliberate utilization of intentional collisions, we demon-
strated the superior speed and energy efficiency achievable 
with impact-aware robotics, surpassing state-of-the-art 
approaches reliant on quasi-static interactions with objects 
or environments.

The integrated components are pivotal in addressing chal-
lenges related to robustness, executing impacts with heavy/
highly geared robots, controlling systems with physical con-
straints, estimating contact force, and numerically modeling 
impact. Our work combines several research advancements, 
including motion generation with a DS, reference adaptation 
for impacts, constraint-aware control, contact state sensing, 
and a contact simulation environment.

This article emphasized the advantages of our proposed 
approach through extensive experimentation and systematic 
comparison between classical grabbing techniques and inte-
grated impact-aware strategies. These findings underscore the 
transformative potential of impact-aware technologies in revo-
lutionizing robotic logistics operations.
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