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This article presents an impact-aware manipulation framework
and its application to logistics, where the challenges related to
the booming of e-commerce have increased the need for faster
and more flexible package handling solutions. Particularly, the
proposed impact-aware framework addresses the problem of
swiftly grabbing and placing objects in depalletizing tasks with
dual-arm robotic systems. Impact-aware robotics leverages
intentional collisions to achieve dynamic interactions and thus
has the potential to be faster and more energy efficient than the
state of the art based on quasi-static interactions with objects or
environments. The generation of desired impacts (contacts at a
nonzero relative speed), generally avoided in classical robotics,
brings multiple challenges encompassing the generation of
robust motions, managing the impact with the object, dealing
with the physical constraints of the robotic systems, contact
state sensing, and simulation of contact behavior. To tackle
these challenges, we developed, within the European Union
(EU)-funded project Impact-Aware Manipulation (I.AM.),
impact-aware technologies that yield an integrated impact-
aware solution. The proposed framework exploits nonsmooth
mechanics to provide robot—object—environment impact mod-
els; it uses dynamical systems (DSs) to generate nominal and
contingency motions with intentional impacts; it leverages qua-
dratic programming (QP)-based control to provide motion exe-
cution with the ability to enforce hardware and safety
constraints; it employs internal state sensing that does not
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require an external force
transducer; and, finally,
it develops an impact
simulation environment
that can handle batch
simulations. This article
highlights the benefits of
the proposed approach in
terms of speed (a 29%
decrease in average task time) and energy efficiency (a 35%

decrease) through a systematic comparison between classical
grabbing and impact-aware swift grabbing and tossing. In
summary, our article underscores the transformative potential
of impact-aware technologies in revolutionizing robotic logis-
tics operations. An accompanying video is available at https://
youtu.be/0Tv-MxOO0rGO.

INTRODUCTION

E-commerce, the process of buying and selling physical goods
online, has revolutionized the global marketplace. With the
world e-commerce market projected to surpass 7.9 trillion
USD by 2027 [1], its influence on warehouse operations, par-
ticularly intralogistics—the internal movement of goods with-
in distribution centers [2]—is profound. In most warehouses,
human workers are still responsible for picking and placing
operations, where items are retrieved from pallets and trans-
ferred to conveyor belts, trays, or tote containers, a task com-
monly known as depalletization.
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Despite its superior dexterity and adaptability compared to
automated systems, the current workforce struggles to meet
the increasing demands of the industry [3]. Several challenges
contribute to this issue: there is a growing scarcity of labor,
and the tasks are physically demanding and repetitive, leading
to workplace injuries.

There exist fully automated depalletizing solutions that
frequently rely on specialized equipment or single robotic
arms! with tools adapted to the types of products to be depal-
letized. Specialized automated systems are convenient for
high-volume processes with little variety in product types [2].
However, these systems have a considerably larger footprint
compared to manual depalletizing solutions and exhibit lim-
ited flexibility in adapting to changing conditions or environ-
ments. An alternative approach is to use collaborative robots

IRecently, industrial applications have included XYZ Robotics’ various depalletiz-
ing systems and Boston Dynamics’ Stretch robot. These products largely use power-
ful single-arm systems equipped with various suction cups.

ontent is final as presented, with the exception of pagination.

(cobots) [4]. Nevertheless, cobot systems tend to have lower
throughput compared to human operators, primarily due
to their quasi-static interaction methods. In addition, cobots
commonly use suction grippers, which are increasingly prob-
lematic as the industry shifts toward packaging materials that
use less plastic and are more environmentally sustainable.
Such limitations partly motivate the use of dual-arm solutions.
In the industry, current dual-arm solutions rely mainly on
human operators. Not only are humans able to immediately
adapt to perturbations or changes in their environment and have
a small footprint, but they can swiftly make and break contact
to manipulate objects, as illustrated in Figure 1. Such skills have
been notoriously hard to replace with robotic systems.
However, in recent decades, robots that can better with-
stand physical interaction with the environment, including
impacts, while providing accurate sensing and actuation capa-
bilities have been developed. This advance in hardware and
control, as well as visual perception, presents an opportunity
to alleviate this problem. A dual-arm robotic framework is one

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on November 21,2025 at 09:38:06 UTC frofﬁﬁ%&@?ﬂ%&& %EMWM%A.ZWE




This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Approach

Making Contact

Tossing

A #
=~ e
‘ N
N4
~—— Nonzero

Contact Speed

FIGURE 1. Schematic of the problem: Human workers swiftly
grab and toss objects with ease, making and breaking contact at a
non-zero relative velocity.

such realization. A dual-arm robotic system has some advan-
tages compared to a single arm with suction cup or finger grip-
pers. First, it spares the need to create custom end effectors for
different types of products [5]. Second, some objects, such as
open-lid crates or parcels, are difficult to handle by means of
single or multiple suction cup end effectors.

In robotics, the exploitation of impacts, generally studied in
locomotion that deals with hybrid dynamic systems [6], is now
drawing increasing interest in the manipulation of objects with
nonnegligible masses [7]. Making contact swiftly (impact)
and breaking contact dynamically (tossing) together have the
potential to substantially speed up depalletization tasks, as
they both eliminate the need for complete pauses of the robots
when grabbing and releasing objects. In practice, several key
challenges must be overcome to generate impact-aware solu-
tions with robots. These challenges include modeling, simulat-
ing and predicting impact behavior, producing robust motions,
managing the impact while accounting for the physical con-
straints of the robot, and estimating the contact state.

CHALLENGES IN IMPACT-AWARE MANIPULATION

The current industry standard is to establish contact at a near-
zero relative speed to have smooth transitions. However, this
comes at the cost of time and energy. In contrast, achieving

Classical

\ Placing

Quasi-Static
Contact

FIGURE 2. In the classical condition, the robot makes contact quasi statically (no impact)
and breaks contact quasi statically (places). In the impact-aware condition, the robot
makes contact dynamically (impact) and breaks contact dynamically (tossing). Note that
this is a dual-arm task. However, for visual clarity, the right robot has been subtracted from

the images.

Impact Aware

o

swift contacts induces impacts. If the object to be manipulat-

ed is not fragile, the impact can be exploited. This article is in

part inspired by the human worker’s ability to safely interact
with objects at nonzero relative contact speeds, swiftly grab-
bing and tossing objects.

Yet, swiftly grabbing and tossing objects poses fundamen-
tal challenges.

1) Industry settings vary greatly, requiring solutions robust

enough to account for differences in the box position,

model, and timing.

Existing robotic systems are heavy and feature high gear

ratios without modeling impact methods. Failure to

account for impacts would result in excessively large forc-
es, potentially damaging the contents of the box.

3) Real systems have physical limitations (joint limits, veloc-

ity limits, torque limits, and so on) imposing constraints

that must be satisfied in practice.

Estimating the state of the system, especially detecting

contact and estimating forces, is a notoriously hard challenge

without having explicit external force sensors, which are
expensive and fragile.

5) There is a need for a versatile simulation environment that
interfaces between a physics engine that is suited to deal
with impacts and a robot control framework and that
allows collecting data for multiple scenarios through batch
simulations.

2

~

4
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CONTRIBUTION

This article focuses on one industrial use case in logistics that
would benefit from the exploitation of impacts. As illustrated
in Figure 2, we consider swift pick-and-place operations in
depalletizing tasks using dual-arm systems [8], [9], [10]. We
summarize the key contributions of the I.AM. European con-
sortium in applying robot grabbing for logistics. Each key
component was developed in isolation and has been individu-
ally published. In this article, we present an impact-aware
framework, developed by integrating these individual compo-
nents, and we quantify the improvements observed compared
to a state-of-the-art classical approach. Furthermore, to
assess the contribution of each module, we conduct an abla-
tion study.

We demonstrate that an impact-
aware control architecture enables
dual-arm depalletizing robots to exhib-
it humanlike dynamic manipulation
abilities, adaptability, and robustness.
This approach addresses the increas-
ing need for faster and more flexible
package handling solutions. By incor-
porating these research contributions
into a single demonstration, this article
exemplifies how leveraging impact
can reduce task time up to 29% for
dynamic manipulation applications in
logistics compared to standard robotic
approaches.

Tossing
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Motivated by the challenges of depalletization, this
article proposes a systematic evaluation of impact-aware
manipulation in a task with a dual-arm robotic system
(two Franka robots) that was used to dynamically grab
boxes from a pallet. We demonstrate the effectiveness of
the proposed approach in reducing task execution time
and energy expenditure compared to quasi-static grabbing
and placing.

In addition, as a result of the integration, resolution
of associated challenges, and validation of impact-aware
technologies, this article offers some recommendations
and perspectives for the use of dual-arm impact-aware
manipulation.

OUTLINE

After the introduction, this article is structured as follows. The
“Methods” section consists of two parts. First, the integrated
framework is introduced, with details on each of the individual
integrated components. Second, the experimental method used
to assess the performance of the integrated system is intro-
duced. The “Results” section is divided into two subsections: a
qualitative summary of observed behavior and a quantitative
assessment of performance evaluation metrics. Finally, the
“Discussion” and “Conclusions” sections explore the implica-
tions of this work, concluding the article with recommenda-
tions for future perspectives.
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METHODS

We begin with an overview of how each integrated com-
ponent functions and its interconnection in the overall
control architecture. Then, we introduce each component
individually: the pre-impact and postimpact motion, the
reference adaptation for impacts, the constraint-aware
controller, the contact state sensing, and the impact simu-
lation environment. Following this, the experimental
methods are presented, and, finally, the performance
evaluation metrics are described.

SYSTEM INTEGRATION

This article introduces an integrated architecture to tackle
the challenges of impact-aware manipulation, including five
key components: 1) a DS-based motion and force generator
that addresses robustness challenges of dual-arm coordina-
tion, 2) a reference spreading (RS) module that removes
unwanted impact-induced peaks in the input signals, 3) a
low-level constraint-aware control utilizing a quadratic pro-
gram to account for the physical constraints of the robotic
system, 4) a contact state sensing module used to detect
impact and estimate contact forces, and 5) an impact simu-
lation environment employed to numerically model the
impact map in a range of pre-impact configurations. A
graphical summary of these integrated components is pro-
vided in Figure 3.
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FIGURE 3. Diagram representing the connection between the different components. Reference motion and force: the motion flow
generated by the DS outside and within the modulated region. The motion of each robot is shaped within the modulation region such that
it passes through the desired transitory state (here, an impact state) with the desired position and the direction of the desired velocity
(see [8] for more details). Reference Spreading: a 2D example of postimpact reference adaptation for impact tasks (figure from [11]).
The postimpact reference matches a pre-impact reference where both robots grasp the box with an upward velocity. Constraint-aware
control: the impact-aware QP regulates the contact velocity in a modified search space to ensure that the postimpact state jumps are
hardware affordable. State sensing: the robot joint torque sensors and an inertial model are used to estimate the external contact
wrenches with a momentum observer. Impact simulation environment: RACK is a simulation environment developed for impact

simulation, is compatible with mc_rtc, and can run batch simulations.
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DS-BASED MOTION AND FORCE GENERATION

Once the desired impact or tossing state has been defined in
terms of the desired position and velocity that must be satis-
fied simultaneously, one needs to generate motions that can
drive the robot toward such a desired state. To address this
motion generation problem, unlike classical approaches
based on motion planning, we propose a solution based on
time-invariant DSs, which offers fast and time-independent
replanning abilities and robustness to perturbations. More
precisely, we adopt a modulated DS approach, where state-
dependent modulation functions locally shape the robot’s
motion so that it passes through the desired impact or release
states [8], [12]. This method generates motion toward an
attractor located near the desired impact or tossing position,
and when in its vicinity (within the modulation region), it
reshapes the robot’s motion such that it aligns first with the
desired velocity while moving toward the desired impact or
tossing state.

In this work, the DS-based motion generation initially
begins with the grabbing action and, upon impact, automati-
cally transitions to the tossing or placing action. Regarding the
tossing task, [12] previously developed a method to determine
the minimum release velocities of the object for given relative
release positions given a learned inverse throwing map. Using
these velocities, a kinematics-based bilevel optimization was
employed to determine the associated feasible release states
(positions and velocities) of the dual-arm robot for both fixed
and moving targets.

In addition to controlling for impact, we also control the
coordination of both robotic arms to ensure the success of the
dual-arm grabbing task. A poorly coordinated system, where
one arm reaches the object before the other, would lead not
only to uncontrolled impact but also to failure of the post-
grabbing task. To achieve dual-arm coordination with the
DS, we compute the cooperative coordinates—the absolute
and relative poses between the two end effectors—based on
the current and desired end-effector poses for each arm. We
then define stable dynamics for these cooperative coordinates
to ensure convergence to their desired values. This allows for
coordinated control of absolute and relative motion, facilitat-
ing synchronized reaching and closing of the dual-hand aper-
ture. We couple the dynamics of relative motion to those of the
absolute one to make the hand’s aperture closure dependent
on the reaching task. Finally, we map the cooperative coordi-
nate dynamics back to the dual-arm end effectors. To ensure
stable grasping of the object, a QP-based method was used
for the online generation of contact forces that are consistent
with the contact constraints. An illustration of the DS motion
flow when grabbing with impact and tossing can be seen in
Figure 3.

REFERENCE SPREADING

Performing motions with impacts results in instantaneous
jumps in the robot velocity signals. If the pre- and postimpact
velocity references do not capture this velocity jump correct-
ly, switching from the pre-impact reference to the postimpact

reference results in a large velocity tracking error. As a con-
sequence, instant jumps of control input can lead to vibra-
tions or unstable behaviors as well as damage, and they can
increase energy consumption. Therefore, the pre- and post-
impact velocity references are adapted in order to match the
predicted postimpact velocity jump.

This article employs an RS approach, originally introduced
in [13] and adapted in [11] to fit with time-invariant velocity
references, such as those presented in the “DS-Based Motion
and Force Generation” section. In this approach, numerical
simulations using the open robotic simulation framework
RACK and the commercial physics engine AGX Dynam-
ics (see the “Impact Simulation Environment” section) are
performed with the system initialized in a range of possible
impact locations, with velocities corresponding to the pre-
impact reference. The postimpact velocities resulting from
these simulations are then saved and used to locally modify
the postimpact velocity reference obtained from the DS-based
approach. An example of this local modification for a 2D use
case appears in Figure 3. Whenever the manipulated object
is within a given distance from its initial position, a convex
combination of the predicted postimpact velocity and the post-
impact DS is used as the postimpact reference. This results in
a more efficient postimpact motion without input spikes at the
time of transitioning to the postimpact reference.

In addition to this reference adaptation, three control
modes are defined, following earlier work on RS, such as [10]
and [11]. These modes are 1) a pre-impact mode, 2) an interim
mode, and 3) a postimpact mode. The pre-impact mode is
active before any impact is detected. This is to track the pre-
impact DS. As soon as the first impact is detected, we switch
to the interim mode. The goal of this interim mode is to fur-
ther prevent control input peaks, especially when impacts are
planned to be executed simultaneously. If the impacts instead
occur in short succession due to tracking errors or uncertainty
in the environment, the contact state is uncertain and rapidly
fluctuating. This means that none of the pre-impact and post-
impact velocity references can be tracked reliably. The interim
mode solves this by initially removing velocity feedback and
gradually increasing the velocity feedback control gain over
time while also gradually increasing the desired grasping
force to promote contact completion. After a fixed time, when
the impact event is assumed to be completed, a switch is made
to the postimpact mode, where the adapted postimpact refer-
ence is tracked.

CONSTRAINT-AWARE CONTROL

To implement motion control and RS control motion, the
physical constraints of the robotic system must be taken
into account. This can be done using the mc_rtc? control
framework. This framework uses task space control formu-
lated as a quadratic program to generate desired joint
accelerations, which enforces robot limitations as

2While this is not an exact acronym, it generally stands for multiconstraint real-time
controller. More information is available at https://jrl-umi3218.github.io/mc_rtc/.
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constraints [14]. These accelerations are used to compute
torques sent as input to the robot’s motor control. The QP
constraints ensure that the robots do not violate joint limits
and prevent (self-) collisions, while the cost function is cre-
ated using tasks that require tracking the reference motion
and force. Additionally, a posture task is added to resolve
kinematic redundancy if any.

As shown in [15], impact awareness (the ability to handle
impact tasks safely) can be achieved in this QP-based frame-
work by reformulating and simply adding the task objectives
and constraints associated with impact without introducing
new decision variables. Although not integrated here, we refer
the reader to [15] for more details.

CONTACT STATE SENSING

Since the RS approach, highlighted in the “Reference
Spreading” section, uses impact detection in the switch
policy between control modes, having a sensitive and
robust impact detector is crucial. Force/torque sensors can
be mounted between the robot flange and the end effector
to accurately estimate the contact wrench at the end effec-
tor. However, incorporating external force/torque sensors
into the robot will increase the complexity of the system,
reduce the maximum payload, and limit the detection of
external interactions with the robot flange. In our current
system and scenarios, we are using seven-degree-of-free-
dom manipulators equipped with torque sensors in each
joint. Using torque measurements and an accurate robot
model, external contact wrenches are estimated using the
momentum observer [16], without any additional hardware
or sensors. To achieve accurate robot modeling and conse-
quently improve wrench estimation, the inertial parameters
of the arm are identified using a linear matrix inequality
approach [17], which employs generalized robot base
parameters [18].

The detector utilizes the estimated wrench and the veloc-
ity at the end effector. The latter is estimated using position
encoders at the joints and is provided by the Franka Control
Interface.

Given an abrupt change in end-effector velocity, the core
insight of the detector to achieve both sensitivity and robust-
ness is to trigger an impact detection only if a significant
external force acts on the end effector in the same direction
as the velocity change [10]. This in turn prevents false posi-
tive detection of impacts caused by an increased external force
when contact is already established.

IMPACT SIMULATION ENVIRONMENT

RACK [19] is a simulation environment developed by Algo-
ryx in collaboration with the Joint Robotics Laboratory at
CNRS-AIST and extensively tested by the Eindhoven Uni-
versity of Technology (TU/e). It uses a human-readable robot
scene description language and can, among others, be used
for open-loop simulations, simulations with external control,
parameter identification, and synthetic data generation.
Although the only physics engine supported at the time of

publication was AGX Dynamics,? the environment is
designed with compatibility with other physics engines in
mind, using dedicated plug-ins. AGX Dynamics is a discrete
element multidomain simulation library based on nonsmooth
multibody systems dynamics with dry frictional contacts and
impacts, designed for real-time performance. It was chosen
because it delivered good frictional contact and impact mod-
els and provided gravity compensation in simulations, similar
to the Franka robots used in this article. A validation of simu-
lations with AGX Dynamics that were performed using the
RACK framework against real-world experiments is present-
ed in [20]. This article demonstrates how we can estimate the
jump in velocity caused by impacts between robots and the
environment with the help of some of the features of the
RACK framework. The so-called impact map was then vali-
dated against real-life experiments, showing only 3.1% aver-
age estimation error.

Through a communication protocol, simulations can be
executed with synchronous robot control, and batch simula-
tions can be performed by using the ability to read and write
data from and open HDFS5 files. Within this article, the con-
trol interface feature is used to communicate with the mc_rtc
control framework, allowing testing the controller used for the
experimental validation directly in simulations. This allows
for safe controller development as well as initial tuning of the
control parameters. The batch simulation feature is used in
the RS approach, highlighted in the “Reference Spreading”
section and described in detail in [11], helping to alleviate
undesired peaks in the input signals. In particular, it is used
to determine the estimated postimpact robot velocity using

3Available at http://www.algoryx.com/agx-dynamics.
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0.5 kg 1.5 kg

FIGURE 4. The experimental setup used to validate the proposed
impact-aware dual-arm manipulation framework. (a) The robotic
system. (b) The set of objects used for the systematic assessment
of the system’s performance: 0.5-, 1-, and 1.5-kg boxes.
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the aforementioned validated impact map for a range of pos-
sible pre-impact states. Notice that these simulations assume
the availability of a rigid model of the objects with which
the robots interact, describing their inertia and dimensions.
For many industrial applications, such as depalletization, as
addressed in the “Introduction” section, this assumption is
reasonable. If not available, (online) parameter identification
is required before such simulations can be performed.

EXPERIMENTAL METHODS
To assess the benefits of leveraging impact, we performed
experiments evaluating the performance of the swift dual-
arm pick-and-toss approach. Our “impact-aware” method
was compared to a pick-and-place approach using quasistatic
contacts, referred to as the “classical” method in this context.
The section begins by describing the experimental setup
and conditions. Next, it outlines the key performance indica-
tors (KPIs).

EXPERIMENTAL SETUP

Two Franka robots are placed side by side, as in Figure 4(a).
A soft pad, first used in [10], was attached as an end effector
for each robot. It consists of a 3D-printed part with a layer of
silicone to provide additional grip and impact damping, pre-
venting impact-induced damage to the hardware. A motion
capture system (OptiTrack) was used to track the position of
the box. Data were recorded at 1 kHz.

To systematically assess the performance of the pro-
posed impact-aware approach, we selected three boxes with
different weights and dimensions. The first box, weighing
0.5 kg, contained foam and rice, measuring [19, 18.3,
18.9] cm. The second box, weighing 1 kg, was filled with
cardboard and measured [18.7, 28.9, 18.5] cm. Finally, the
third box, weighing 1.5 kg, was filled with fabric and mea-
sured [26.8, 36, 24.8] cm. These boxes were chosen to
represent typical packaging encountered in industrial
settings. These objects are displayed in the supplemen-
tary video.

In addition, we evaluated the robustness of the method
using two boxes with varied contents. These included a box
filled with juice containers, simulating a standard grocery
store box, and another box containing a loose drill chuck and a
water bottle to emphasize potential changes in mass distribu-
tion during the task. Furthermore, we conducted a test where

TABLE 1. A summary of the task conditions.

RS IMPACT TOSSING
Impact aware v v v
RS ablation v v
Impact ablation v
Toss ablation v v

Classical

A checkmark (v') denotes an active component.

the system grasped two adjacent boxes to evaluate its perfor-

mance under such conditions.

The considered dual-arm grab scenario involved several
steps. Following a go command, both robots were steered by
the DS toward the box to reach a desired impact speed at a given
uncertainty margin prior to impact. This desired impact speed
and contact uncertainty margin depend on the robot accelera-
tion limits and the accuracy of the box state estimate. Given
the hardware and industry application, a contact uncertainty
margin of 6.75 cm was used. After an impact with either robot
is detected (using the impact detection scheme highlighted in
the “Contact State Sensing” section) the controller transitions
from the pre-impact mode to the interim mode, followed by
the postimpact mode, as explained in the “Reference Spread-
ing” section. Here, a postimpact DS, locally modified to match
the impact dynamics, is followed to lift the box. Here, there
are two options. The first is to transit to a DS that “tosses” the
box (releases the box with a nonzero velocity), and the second
is to transition to a DS that “places” the box (releases the box
at the final position with a quasi-static velocity). After the box
reaches the goal, the robot returns to the initial position for
another cycle.

For each combination of the five task conditions and three
boxes (0.5, 1.0, and 1.5 kg), the grabbing was performed for 20
trials. This resulted in 300 trials. Here are the five task condi-
tions considered (summarized in Table 1).

1) In the impact-aware task condition, the RS was active;
the robot grabbed the box swiftly, resulting in impact; and
the robot tossed the box to the goal by releasing the box
with a nonzero relative velocity. This condition integrated
all key components presented in this work.

2) In the RS-ablation task condition, the RS was not active.

3) In the impact ablation task condition, the robot made qua-
si-static contact with the box (contact speed of 0.1 m/s),
and the RS was turned off. Thus, this condition removed
the impact when making contact with the box.

4) In the task-ablation task condition, the robot placed the
box at the desired position quasi statically. Thus, the robot
did not dynamically break contact by tossing; instead, it
placed the box at the target.

5) In the classical task condition, all three ablations were com-
bined. Thus, in this case, the RS was inactive, the robot qua-
si-statically made contact, and the robot quasi statically
placed the box at the target. Thus, all conditions were “inac-
tive” when compared to the impact-aware task condition.

PERFORMANCE EVALUATION METRICS

In this article, we evaluate the performance of the proposed
impact-aware dual-arm controller in comparison to state-of-
the-art dual-arm quasi-static control, referred to as classical.
Additionally, we assess the system’s performance when indi-
vidual components are ablated. For evaluation, we consider
the following KPIs. Methodologically, each of these parame-
ters is computed on the basis of estimates and thresholds. An
important measure for detecting these states is the estimate
of the time that the robot makes or breaks contact.
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The task time (in seconds) is defined as the time from the
time the contact is detected to the time the release is detected.
This measure quantifies the time from pick to place/toss regard-
less of the robot’s reaching and retracting motion phases.

The cycle time (in seconds) is defined as the duration from
the time the robot starts the task to when it returns to its initial
position within a tolerance region of 10 cm. This metric mea-
sures the combined benefit of grabbing with impact and tossing.

The pre-impact time (in seconds) is computed to study
the temporal benefit of making impulsive contact. It is defined
as the time the robot end effector is within 10 cm of making
contact with the box until contact with the box is detected.

The mean desired acceleration (meters per second
squared) represents the velocity feedback signal calculated by
the controller, which serves as a metric to indicate the presence
and severity of unwanted impact-induced peaks in the control
input signals. The mean desired acceleration is computed dur-
ing the 0.05-s time after impact, which coincides with the time
frame where the interim mode defined while the RS frame-
work is active in the impact-aware task condition. Excessive
spikes in the desired acceleration can excite vibration modes
and lead to instability. Such spikes can also result in torque
jumps exceeding the robot’s limitations, making it challeng-
ing for the QP to find solutions within the robot’s constraints.

The robot energy consumption (in joules) is defined as E
and computed by

N
E=n) |l |4

i=n

(1

where the vertical bars denote the absolute value; n denotes the
time sample index that corresponds to the instant when the
robot’s motion starts; N denotes the time sample index that
corresponds to the sample time where the box is released; the
joint torque measured by the robot is denoted by T, where the
constant time duration between samples is denoted by At; and
the joint velocity of the robot is denoted by ¢. The absolute
values of torque and velocity were computed, this assumes the
work done on the robot is not recovered

(e.g., through regenerative braking) is

consistent with [12].

Finally, the section culminates with a presentation of results
highlighting the robustness of the employed methodologies.
This serves to underscore the reliability and efficacy of the
experimental approaches employed. Supplementary material
is available at https://doi.org/10.1109/MRA.2025.3615262, and
a video is provided at https://youtu.be/2tk_pJEbDcY.

QUALITATIVE RESULTS

The velocity norm, from representative trials under both the
classical and impact-aware conditions, is presented in Figure 5.
This figure offers detailed insight into task dynamics. Both
conditions exhibit an increase in speed as they approach the
box for contact. However, in the impact-aware case, the norm
of the velocity reaches approximately 0.4 m/s at the moment
of contact with the box, consistent with an impact event. In
contrast, the classical condition shows a decrease in speed to
0.1 m/s at contact, with no significant discontinuity in veloci-
ty, consistent with its intended use as a control for quasi-static
contact conditions. Following contact, velocity rapidly
increases during the lifting phase. In the impact-aware condi-
tion, this lifting phase is notably shorter, and the box is
released with nonzero velocity. Elsewhere, the classical con-
dition takes longer to reach the goal; as it approaches, it again
decreases in speed to place the box at the target, evident in
the discernible drop in velocity just after 1.0 s. Finally, both
conditions exhibit a spike in speed as they return to the initial
position. Notably, the impact-aware condition begins its
return much earlier than the classical method.

Figure 6 gives the absolute value of the desired accelera-
tion, which is a good indication of unwanted input spikes, as
addressed in the “Performance Evaluation Metrics” section.
The desired acceleration is shown for the vertical (z) direction
around the time of impact for the impact-aware case versus
the RS ablation case. Results for this z direction are presented
since, given the nonzero pre-impact velocity in this direc-
tion, the nonzero postimpact velocity in this direction can
cause a sudden velocity tracking error and subsequent control

: o
RESULTS T —— Impact Aware 8 3 E
This section provides results derived - Classical é uc.|j
from benchmarking experiments con- ’
ducted at EPFL. The presentation is
structured in distinct segments to 20'6 [
facilitate clarity and comprehension. ;
First, analysis of the qualitative behav- = 04
ior for the different tasks is presented.
These visual representations offer 0.2F
insights into the observed behaviors
within these tasks. Subsequently, 0_2 > 0 ” 5 3

attention turns to the performance
evaluation metrics. By juxtaposing the
results of tasks, a comparative analysis
among the conditions is facilitated.

FIGURE 5. The single-trial comparison: velocity norm plots. The red line represents the
impact-aware condition, while the blue line represents the classical condition.
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30

of speed. In addition, the impact-aware

- |mpact Aware
—— RS ablation

condition showed a notable decrease
in energy consumption, with a reduc-
tion of 35% compared to the classical

1Xees| (mVs,)

approach.

The task time was defined as the
duration from the detection of contact
with the box to the moment of release

-0.05 0 0.05 0.1

t(s)

FIGURE 6. The desired acceleration in the vertical (z) direction commanded to robot for
the impact-aware condition (blue) and RS ablation condition (green), both for a single

experiment with the 1.5-kg box.

feedback error if not considered. The abrupt peak in the
desired acceleration for the RS ablation case indicates such a
sudden increase in the control effort that can lead to increased
vibration, destabilization, and hardware damage. Instead,
because of the RS approach taken in the impact-aware condi-
tion, this input peak is prevented, and the commanded accel-
eration gradually increases to the same steady-state level as
the RS ablation case, away from the impact.

PERFORMANCE EVALUATION

The goal of performance evaluation metrics is to quantify the
performance of the combined system and assess its efficacy.
Below, we present the average task time, cycle time, pre-impact
time, mean desired acceleration, and robot energy consump-
tion. These results are displayed graphically for the 1.5-kg box
in Figure 7 (see “Landing Position™) and the results for all the
boxes are listed in Table 2.

In Table 3, the percentage differences between each task
and the classical method are reported. The impact-aware con-
trol demonstrated superior performance across several metrics
compared to the classical approach. Specifically, it showed
reductions in pre-impact time (8%), mean desired acceleration
(76%), task time (29%), and cycle time (14%), indicating faster
task completion. A positive percentage value indicates that the
impact-aware task outperformed the classical method in terms

15— 40—
35 1.6
i
R 3 1.4
2 1 g g12
o 2.5 £

g £ =1
= E 2 T
i~ % 15 8 ’
§o.5 g % 0.6
1 & 0.4
0.5 0.2

0 0 L] 0

Task Conditions Task Conditions

I Impact Aware [l RS Ablation

0.15 0.2

Task Conditions

of the box. This metric served to quan-
tify only the advantage of tossing, as
the benefit of achieving rapid impact
occurs before contact. It is evident
in Figure 7 that there is essentially a
binary change in the time difference
between conditions such that tasks with
tossing active were more than 0.5 s faster.

Cycle time serves as a metric to quantify the overall time
improvement of the combined system. Both the impact-aware and
the RS ablation conditions emerged as the fastest. The advantage
of making impulsive contact saved approximately 0.1 s, while the
benefit of tossing also resulted in nearly 0.5 s of savings.

The pre-impact time metric aimed to quantify the time
saved by initiating contact with the box at a nonzero velocity.
We observed significant reductions in the percent difference
between the classical and impact-aware task conditions (refer
to Table 3 and Figure 7). It is crucial to note that this differ-
ence is dependent on the duration of movement at a velocity
of 0.1 m/s before contact.

The desired mean acceleration served as a metric to quan-
tify the presence and severity of unwanted peaks in the control
input signals. In Figure 7, it is clear that the tasks with spread-
ing of the reference (impact awareness and toss ablation)
resulted in a substantially lower mean reference acceleration
than in the cases without.

In the ablation study, several key aspects emerge from
the results. First, in the ablation of RS, there is more than an
approximately twofold increase in the observed mean refer-
ence acceleration between the RS and ablated RS conditions.
This suggests that this control regime significantly benefits
from the presence of RS, enabling the use of higher gains and

25 120
J 100 ]
n @;20 3
1 5 > 80 |
= ()}
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= 10 °©
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0

o
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[ Impact Ablation [l Toss Ablation [ Classical

FIGURE 7. The key results. For the 1.5-kg box, each of the performance evaluation metrics means is presented. The black error bars
denote plus or minus one standard deviation from the mean. The legend defines which tasks correspond to which colors.
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TABLE 2. A summary of the mean and standard deviation of the metrics.

METRIC &%s (KG) IMPACT AWARE RS ABLATION IMPACT ABLATION  TOSSING ABLATION CLASSICAL
Task time (s) 0.5 0.71+0.02 0.64 +0.04 0.64 +0.02 1.29 +0.02 1.19+0.03
1.0 0.83+0.05 0.79 +0.02 0.76 +0.03 1.24 +0.08 1.17 £0.03
1.5 0.81+0.02 0.84 +0.02 0.83+0.03 1.27 +£0.08 1.35 £ 0.04
Cycle time (s) 0.5 3.14+0.03 3.09+0.03 3.22+0.05 3.55+0.03 3.67 +0.05
1.0 3.08 +0.09 3.11+0.05 3.21+0.03 3.40+0.14 3.65 +0.05
1.5 3.02+0.02 3.18+0.03 3.25 +0.06 3.39+0.12 3.73+0.06
Pre-impacttime (s) 0.5 1.26 + 0.01 1.27 +0.05 1.39 +0.02 1.27 +0.01 1.42 +0.02
1.0 1.17 £0.01 1.17 £0.00 1.32+£0.02 1.19+0.02 1.39+0.03
1.5 1.18 £ 0.01 1.19 £ 0.00 1.26 +0.01 1.18 £0.01 1.29 + 0.01
Mean desired 0.5 3.83+0.22 16.19 +2.99 11.86 + 0.55 4.66+0.19 18.66 + 0.32
acceleration (m/s2)
1.0 4.29+0.31 19.08 +0.75 14.13+0.85 5.08 + 0.44 20.80 +0.39
1.5 4.61+0.26 21.85+0.97 16.02 + 0.95 5.74+0.15 22.40 +0.43
Robot energy 0.5 68.46 + 1.90 68.52 + 1.21 67.27 +1.62 95.59 + 1.65 106.85 + 2.12
consumption (J) 1.0 66.92 + 5.00 68.29 +2.46 62.97 +2.78 91.56 + 8.46 102.99 +2.24
1.5 59.57 +1.16 68.21 + 1.44 67.68 + 2.54 94.29 +5.17 116.20 +2.95

Landing Position

The landing position of the 1.5-kg box was calculated for the
reported results. The standard deviation of the landing position
for the impact-aware case (with a toss) and in the classical case
(with a placing action) is reported in Table S1.

TABLE S1. The standard deviation of the final hox

position.

DIRECTION X(CM) Y(CMm)
Impact aware 2.6 2.0
Classical 0.5 0.1

achieving better tracking performance without introducing
peaks in the control inputs at the time of impact. Second, when
impact was ablated, there was an increase in the pre-impact
time. Third, when the toss was ablated, there was also a sub-
stantial increase in task time. Thus, each component of this
design has been validated separately, supporting the reasons
for their presence in the control framework.

ROBUSTNESS EVALUATION

To evaluate the robustness of the impact-aware system, experi-
ments were conducted using a broader selection of boxes. These
tests included a box containing juice containers, a box housing a
loose drill chuck and a water bottle, and simultaneous grasping
of two boxes. The system was able to successfully grab and toss
each of the three objects quickly and without failure.

TABLE 3. A summary of the percent difference in each

KPI between the classical condition and the impact-
aware condition.

BOX TYPE
Average KPI 0.5 (kg) 1.0 (kg) 1.5 (kg)
Task time 1% 29%  40%
Cycle time 14% 16% 19%
Pre-impact time 1% 16% 8%
Desired acceleration 76%" 78%*  79%"
Robot energy 36% 35% 49%

This table includes results from the different boxes. Note that positive
differences correspond to the case where the I.AM. condition outper-
formed the industry-standard condition. Furthermore, an asterisk (*)
indicates that the difference between the mean desired accelerations
was computed between the impact-aware and RS-ablation conditions.

DISCUSSION

In this article, we highlight the contributions of the different
components used in impact-aware grabbing and tossing
developed within the European consortium project .AM, a
collaborative effort involving CNRS, EPFL, TU/e, the Tech-
nical University of Munich, and Algoryx. The overarching
goal of the I.LAM. project is to advance robotics technology,
particularly in logistics operations, through the integration of
impact-aware technologies. Our work combines several
research advancements, including motion generation with a
DS, reference adaptation for impacts, constraint-aware con-
trol, contact state sensing, and a contact simulation environ-
ment. These aspects are pivotal in addressing challenges
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related to robustness, executing impacts with heavy/highly
geared robots, and controlling systems with physical
constraints.

KEY RESULTS

Our platform demonstrates notable advancements, particular-
ly in achieving faster task completion and improved energy
efficiency compared to conventional industry methods reliant
on quasi-static contact.

For example, in the case of the 1-kg box, our pick-and-
toss task resulted in a 29% reduction in the average task time
compared to the industry-standard place task. This substan-
tial efficiency gain highlights the potential of impulsive
contact strategies to significantly minimize the duration of
the task and improve the speed of logistics operations. Fur-
thermore, analysis of the average robot energy consumption
revealed a 35% decrease in energy expenditure during the
pick-and-toss task compared to the pick-and-place task, fur-
ther emphasizing the benefits of impact-aware technologies
in optimizing resource utilization without compromising
task performance.

Considering Figure 7, notice that the RS ablation case
results in only a relatively small increase in the cycle time.
However, as can be seen for the mean desired acceleration,
the benefit from RS becomes apparent from the increase in
the mean desired acceleration when RS is ablated, indicat-
ing a spike in the input signals that can induce vibrations and
increase the forces on the robot and objects. This can in turn
increase the likelihood of failed task execution and wear on
the objects and robots and, thus, is not desired.

Notice that the time savings resulting from tossing are
approximately 0.5 s per cycle, as seen in the task time plot in
Figure 7, substantially outperforming the impulse pick action,
which saved around 0.1 s per cycle, as seen in the pre-impact
time plot in Figure 7. Although both strategies contribute to
reducing the total cycle time, the magnitude of time saved
by tossing is important given scenarios where the considered
task permits such action. This disparity in time savings under-
scores the crucial role of tossing action in expediting logistics
operations, particularly in tasks involving repetitive actions
and large volumes of objects. For tasks requiring thousands or
even millions of cycles, the cumulative time savings achieved
by tossing or impulsively picking can be substantial, leading
to significant improvements in overall operational efficiency
and throughput.

The positive effect from the impulsive pick action could
be further improved by ensuring that the impact directions
and speeds of both arms are defined such that their net effect
propels the object toward its desired postimpact state (the
actual postimpact state depends on the properties of the col-
liding bodies). Inadequate impact directions would unnec-
essarily stress the object. This highlights the importance of
an impact planner. Even if such a module has not been inte-
grated into this article, research is underway to develop a
method for optimal impact states given an object’s postgrab-
bing manipulation task.

Regarding tossing, it is worth pointing out that mak-
ing decisions about when to toss an object or not (based
on the predictability of the outcome and whether this
is relevant for the task to be executed) is an ongoing
research topic.

ASSUMPTIONS AND THRESHOLDS

In this article, we chose an impact velocity of 0.1 m/s and a
contact uncertainty margin of 6.75 cm to comprise the quasi-
static condition. These parameters directly affect the reported
time metrics. We want to clearly articulate that the advantag-
es of impact-based grabbing, as reported here, will decrease
as box position certainty improves to allow for a smaller con-
tact uncertainty margin. In contrast, the advantages of impul-
sive contact grow in scenarios with greater uncertainty,
where the RS method is particularly effective. As discussed
in the “RS” section, the RS approach, especially its interim
mode, is designed to manage positional uncertainty in the
environment, as shown in [11], where experiments introduced
up to 3 cm of artificial uncertainty. Therefore, under condi-
tions of higher positional uncertainty, the time savings from
impulsive contact are expected to exceed the 8% improve-
ment reported here.

In this article, we used an OptiTrack motion capture system
to measure the position of the box. It is important to note that
this choice does not represent a fundamental limitation; a vari-
ety of pose estimation tools or methods could be employed to
estimate the box’s pose in practice.

FRAGILE OBJECTS

One key insight derived from our work is the nuanced impact
of moving into contact with nonzero velocity, contingent
upon factors such as the precision of object modeling and the
fragility of manipulated objects. Although precise object
models enhance the benefits of impulsive contact, the
approach was found to work quite well for real-world indus-
trial applications, even when modeling assumptions were vio-
lated. This demonstrates the advantages of this approach,
particularly for resilient objects.

However, it is essential to acknowledge the inherent limita-
tions and considerations associated with impact-aware strate-
gies. The maximum allowable impact speed plays a crucial
role, as excessively high impact velocities could lead to unde-
sirable consequences, especially for fragile objects. Therefore,
a careful compromise must be maintained between the pre-
dictability of the behavior of objects and the potential impact
forces to maximize the effectiveness of impact-aware control
methods.

ROBUSTNESS

In this article, the selected boxes were intended to mirror
objects commonly encountered in industrial settings. We
conducted tests with various masses, sizes, shapes, and iner-
tial distributions, including objects that were not single rigid
bodies. However, in our robustness setup, we limited our
examination to boxes with a mass no greater than 2 kg. The
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decision stemmed from the robot’s ability to impulsively pick
and toss each object 20 times without failure.

The Franka robot’s maximum payload restricted the
experimental objects. However, there are no theoretical
limitations that prevent the application of this technol-
ogy to any torque-controlled robotic platform with larger
torque limits, such as the Kuka ITWA. It is important to
note that applying this technology to a system with lower
torque limits effectively highlights the advantages of QP
control frameworks, such as mc_rtc. Operating close to the
hardware limitations of the robot represents a significant
real-world challenge.

Notice that while the dual-arm soft-pad design proved
effective for a broad range of objects, there are instances
where it may not be ideal. For example, bins with handles
(designed for lifting rather than grasping under pressure)
present challenges. Their deformation and narrowing toward
the top indicate a lack of structural integrity for compres-
sion-based grasping. In theory, these methods are limited
to objects that can withstand compression-based grasping.
Thus, the choice to investigate boxed objects was based on
its application to industry.

Similarly, small or irregularly shaped soft objects wrapped
in plastic may be better suited for single-gripper or suction cup
gripper systems. Our experimental setup exhibited remark-
able robustness, enabling rapid grabbing and tossing of a wide
array of objects.

Notice that the adoption of this technology does not
preclude the use of other end effectors or robotic systems
employing alternative grasping approaches for objects
unsuitable for compression-based manipulation in indus-
trial settings.

PREGRASPING MANIPULATION

In this article, our concern was to measure the advantages of
utilizing impact, enabled by integrating scientific knowledge
into the dual-arm pick-and-toss task. Thus, we specifically
targeted scenarios where the box was prepared for grasping.
However, in depalletizing processes, preparatory actions,
typically undertaken by human workers, are often necessary
to position the box for grasping. Although aspects of pre-
grasping manipulation are underway, they remain an area of
future work.

CONNECTION TO HUMAN RESEARCH

We would like to point out that humans can exhibit
extremely low mechanical impedance at the hands or
fingertips relative to current robotic systems. Thus,
their solutions to handle fast contact are substantially
different from those of a torque-controlled robot with
large gear reductions. Although motivation comes from
human behavior, the solution presented here is distinct
from that of a biologically motivated controller. Thus,
in this work, we specifically did not make comparisons
to quantify the extent to which the robot behavior was
humanlike.

SUMMARY

Our article underscores the transformative potential of
impact-aware technologies in revolutionizing robotic logistics
operations. By addressing challenges associated with conven-
tional quasi-static methods and leveraging controlled
impacts, these technologies offer significant improvements in
task efficiency and energy utilization, thereby paving the way
for enhanced productivity and operational effectiveness in
warehouse and distribution center environments.

CONCLUSIONS

This article highlighted the successful integration of
impact-aware technologies and their application in logistics
scenarios, with a specific focus on grabbing and depalletiz-
ing tasks involving dual-arm robotic systems. Through
deliberate utilization of intentional collisions, we demon-
strated the superior speed and energy efficiency achievable
with impact-aware robotics, surpassing state-of-the-art
approaches reliant on quasi-static interactions with objects
or environments.

The integrated components are pivotal in addressing chal-
lenges related to robustness, executing impacts with heavy/
highly geared robots, controlling systems with physical con-
straints, estimating contact force, and numerically modeling
impact. Our work combines several research advancements,
including motion generation with a DS, reference adaptation
for impacts, constraint-aware control, contact state sensing,
and a contact simulation environment.

This article emphasized the advantages of our proposed
approach through extensive experimentation and systematic
comparison between classical grabbing techniques and inte-
grated impact-aware strategies. These findings underscore the
transformative potential of impact-aware technologies in revo-
lutionizing robotic logistics operations.
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