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Learning the Inverse Hitting Problem

Harshit Khurana
and Aude Billard

Abstract—This letter presents a data collection framework and
a learning model to understand the motion of an object after being
subject to an impulse. The data collection framework consists of
an automated dual arm setup hitting an object to each other, like a
collaborative air-hockey game. An impact aware extended Kalman
filter is proposed for automation of the air-hockey setup which
approximates the discontinuous impulse motion equations through
a hitting force model by balancing the energies during collision. To
capture the variance in the motion that stochasticity of friction
introduces, the errors in the controls for the hitting flux, we model
the stochastic relationship between hitting flux and object’s result-
ing displacement, using full density modeling. Further we show
the application of the learnt motion model for planning sequential
hits with two or more robots, in a Golf-like principle, to enable
an object to reach a location far beyond the reach of a single
robot.

Index Terms—Impact aware manipulation, robot collaboration,
impact aware extended Kalman filter, dual arm system, GMM,

GMR, golf.

MPACTFUL contacts between a robot and its environment
I are rarely exploited in robotic manipulation. In moving ob-
jects from a given position to a desired position, methods such
as pick and place (prehensile), or pushing (non-prehensile) are
more widely used than hitting an object. In such manipulation
strategies, the object’s final desired position is typically within
the workspace of the fixed robot. In pushing, this is due to estab-
lishing contact between the robot and the object at relatively low
speeds. This is called the quasi-static assumption and the inertial
effects of the bodies in contact are negligible. While hitting an
object [1] has the benefit of increasing the space in which an
object can be placed, it is important to consider the dynamics
of the robot and the inertial properties of the object. Hence,
the robot-object contact cannot be assumed to be quasi-static.
Predicting object motion when pushing is challenging due to the
multi-modality of the factors affecting the object’s displacement,
such as contact position, and variable friction. [2], predicting the
final displacement of an object after an impactful hit requires a
model of the impulse and the restitution coefficient that measures
the amount of energy transmitted. This is particularly difficult
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when the impact is inelastic. Accurate modeling of the expected
displacement after impact is crucial to invert the model, so as
to plan the impact to achieve a desired motion. Pushing objects
to move them from one place to another has benefited from
the improvements in data driven methods such as reinforcement
learning and modeling through heteroscedastic Gaussian Pro-
cesses as they implicitly model the contact behavior [3], [4], [5].
Previously in [1], we proposed a method for impact aware
motion planning and inertia-based control to generate repeatable
impacts on objects of different masses with constraints on their
shape and in [6], we proposed a method to model the process of
hitting an object so as to place it at a desired position outside of
the workspace of the robot through a regression model linking
hitting velocity to the distance traveled by the object. In this letter
we use hitting flux as the hitting control parameter and learn the
relationship between the hitting flux and the object motion and
show its applicability. We write the contributions of this letter
as follows:

1) A semi-autonomous dual arm system for robot - object
impulsive interaction data collection
An Impact Aware Extended Kalman Filter (IA-EKF) to
predict object’s final position subject to an impulse
A learning based inverse map to predict the hitting param-
eters to achieve the desired object’s displacement, through
modeling of the stochastic relationship between object
displacement and hitting flux.
Experiments validating the learnt model on different
robots and objects
A motion planning framework inspired by the principles
of golf for placing objects outside the robot’s reach in an
unstructured environment.

2)

3)

4)

5)

II. RELATED WORK

A. Manipulation Through Pushing

1) Analytical + Data Driven Models: In pushing, the motion
of the object can be represented through an analytical model
taking into account the contact forces [7], [8] or through data
driven models such as [2], [3], [5]. In the above mentioned works,
the quasi-static assumption implies that the inertia forces are
negligible. Hence, the object moves only when the robot is in
contact with the object and applying force on it. The motion
of the object, when modeled analytically does not take into
account the variability of the robot controller and the stochastic
nature of friction at contact points, and in the sliding surface. To
deal with the uncertainty of these parameters (friction, contact
area etc), [8] estimates the parameters with data to make the
prediction for the object motion closer to reality. Even if one
knows such parameters, data-driven models exhibit stochasticity
in the friction model; that is, given the same pushing strategy,
the object’s motion differs slightly each time.
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Fig. 1.
Detailed diagram of the control inputs, outputs and state variables.

TABLE I
OBJECTS / BOXES USED IN THE EXPERIMENTS

Object-1

Objec{ 2 Object 3

Object 1 2 3

Mass (kg) 0.36 1.96 0.49

size (cm3)  18x19x19  26x26x27 h=22cm,r= 10 cm
shape cuboid cuboid cylindrical

B. Manipulation Through Hitting

Robots interacting with the environment with impacts can be
seen in examples such as RoboCup [9], robot table tennis [10],
golf [11], baseball [12], and in quadrotors juggling using a
small ball [13]. But little work has been done that incorporates
the object and robot inertial properties. In our previous work
we have established preliminary methodology of learning the
object motion through data [6] and creating a motion for the
robot for repeatable hits while controlling for hitting flux, which
incorporates the hitting speed and the directional inertia of the
robot [1].

C. Object Motion Estimation

Kalman and Particle filters have been extensively used for
predicting motion of an object subject to external forces with
incomplete measurement and noisy sensors. Yet, the literature
lacks online estimation strategies for predicting motion of an
object subject to impulse. [14] uses a Kalman filter to predict
puck’s motion after being hit by the robot and mitigates the
discontinuity in the collision between the puck and the table
using a particle filter. However the model of the motion of the
puck does not incorporate the contact between the robot and the
puck, the estimation depends on the measurements of the puck’s
motion, and in this case the assumptions such as an infinite mass

From the center going outward: 1) Dual robot placement schematic. 2) High level motion planning for the robots, i.e., REST state and HIT state. 3)

for the stick and purely elastic collisions with a coefficient of
restitution of were reasonable. In our experimental setup, both
the inertial dynamics of the box and the robot are significant, the
impact can not be modeled as perfectly elastic, and the friction
between the box and the table is substantial.

1II. METHODS

We describe the data collection framework, the experimental
setup, and learning model for the object motion !

A. Hitting Flux and Motion Generation

Hitting flux (¢y,) is defined as

A L

on = o +merh (1)

, Where 1}, is the directional inertia of the robot and Y, is

the hitting speed. We use the same method for robot motion

generation as in [1] which works for planar sliding and for

objects where the established contact normal is parallel to the

sliding plane. This is assumed for objects used in this manuscript
as well.

B. Physical Setup

Fig. 2 shows the dual arm framework for data collection. It
consists of the robots arms KUKA lbriiwa 7 and 14, two different
sized box objects with uniform mass distribution (Refer Table I).
A third cylindrical test object (Object 3) is used for testing the
model as well. The setup is surrounded by 12 Optitrack 17 W
infrared cameras which can accurately track objects in 3D space
through markers.

C. Data Collection Through Dual-Arm Hitting Game

To learn the motion of an object subject to an impulse and
environment variability, we need data. Most hits would make
an object move out of the reachable workspace of the robot,

IThe code for all the above is publicly available at: https://github.com/epfl-
lasa/air_hockey.


https://github.com/epfl-lasa/air_hockey
https://github.com/epfl-lasa/air_hockey
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Fig. 2.
(c): The two different configurations of the robot used in hitting the boxes.

TABLE II
DATA COLLECTED FOR EACH ROBOT
Robot {1,2}
Hitting time t, € R
Hitting joint config. (rad) qn € R7

Hitting joint vel. (rad/s) gn € R7

Hitting torque (Nm) To ER7

Commanded hitting torque (Nm) 7. €R7

EE hitting position (m) xr €R3

EE hitting vel. (m/s) xr €R3

EE orientation ¥ € SO3

EE dir. inertia (kg) Ar €R

Achieved hitting flux (m/s) on € R
Object trajectory (s, m) {t,x0} € {R,R3}

Object distance moved (m) deR

making it impossible for the robot itself to reset the box to its
initial position. Having a human reset the environment is time
consuming, while limiting the environment variability that data
can inherit. Thus, we create a dual arm system inspired by the
game of AirHockey, such as in [15], [16], [17] removing the
need to reset the object while doubling the data collection speed.
High level task decision policy + Motion plan: Fig. 1 shows
diagrammatically the robots and the policy that is realized at
high level control.

1) Hitting: The robot moves to generate the desired hitting

flux (19) to hit an object.
2) Rest: The robot returns to its initial position after hit.
The variables recorded are as shown in Table II.

D. Impact Aware EKF

In the air hockey setup, where robots hit the puck back and
forth, we propose an Impact-Aware Extended Kalman Filter to
predict the puck’s final position online, significantly reducing
data collection time. This enables the robot to begin moving
toward the expected box rest position before it arrived. The
proposed method has two key aspects. Firstly, the approach
incorporates not only information about the box, but also the
robot, which is represented as a flux. Secondly, it employs a
smoothed approximate model of the hitting force that acts on the
box. This smooth Gaussian contact force function, eliminates
the discontinuity, enabling the utilization of an EKF. While
this approach results in a knowingly incorrect estimate of the
absolute box position at impact, it provides the benefit of a
velocity estimate which converges faster — the key aspect for
estimating the final box position. In this section, both, the impact
aware state transition model and box only state transition model

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 5, MAY 2025

(b)

(a): The physical setup (KUKA Ibr iiwa 7 and 14) robot arms and the two different uniform boxes used. A table top acts as the sliding surface. (b) and

are described, results of which are compared in Section III-E.
The impact-aware model incorporates knowledge of the desired
flux and a smooth hitting force model into the prediction process.
Modeling the contact dynamics for the impact-aware model
necessitates addressing non-linearity. In this work, we utilize
a standard implementation of the EKF, which is presented in
Appendix C. To ensure consistency, we employ the same stan-
dard EKF implementation presented in the Appendix C for both
models.

Box Only Model: The motion model of the box alone, neglect-
ing the robot, simplifies to the case of a linear Kalman Filter,
with no need for the local linear approximation of an EKF. The
state of the system is denoted by x” = [x°, x°, u]” where,

W=k

Xo't=XE p
Here, x, represents the box position, x, denotes the box velocity,
w represents the friction coefficient, e denotes the coefficient of
restitution, dt represents the time step, and m denotes the mass
of the object. This model did not include any input w, and the
measurement was solely comprised of the box position, denoted
by y = [Xol.

Impact Aware Model: This model incorporates an estimate
of the robot end-effector position denoted by ., velocity by
Xr, and the energy imparted to the box denoted by E. The
state vector here is =% = [Xo, Xo» Xrs Xrs E, i1, €]T. The state
transition function is defined as,

k+1 _ K
=p

, dt?
Xo ™ =x6 + (dDXs + 5~ (f7 + F), @
el ok Qe
xet = X5+ (fF + 1), 3)
Xt =+ (dh)xy, )
X=X (5)
g _ [EE dt‘x’; FE| A BY < Epreg ©
Epred else
Mk+1 — uk, Ek-‘rl — Ek (7)
Where the impact force is defined as,
o oxp(%’;) if B < FEpred
fi= 2 (®
0 else ,

where the distance between the end-effector and the box is
defined as Ax. The parameter oo determines the width of the
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force Gaussian, while oy is chosen such that the work done
by the hitting force equals the work expected based on the
desired flux. The selection of o5 is discussed in Appendix B.
The predicted energy, Ep,cq is the integral of the impact force
over the distance and is defined using the predicted flux equaling
o109V 2. Additionally, the friction force is defined as,

fr=—sgn(xo) pmg ©)
where g is the gravitational constant. The only input was the
reference flux, denoted as ¢. The measurement includes both
the box position and the end-effector position, represented as

Y= [Xm X’I‘]T'
To estimate the final position denoted Y y, knowledge of the

predicted final position based on flux denoted )%? is combined

with the state estimate from the EKF denoted x%*™" . This
assumes that the relation between flux, the coefficient of restitu-
tion, and the predicted post object velocity is ., = (1 + €)¢.
At the start of the task the best estimate of the ﬁnéﬁ box position
is based on the flux. This prediction assumes friction was the
only force acting on the box after contact. The final position
prediction based on hitting flux is,
>A<¢ _ Xinit + (X:@)?

f o 29
where x"% is the initial box position. The predicted final box
position based on the EKF velocity estimate is,

(10)

~kalman k (X o ) ’
X ot g (11)
A convex combination of the flux prediction and the EKF predic-
tion is constructed based on the energy imparted on the box. In
this case alpha is defined as o = E¥/ E}yeq. This combination

is used to initialize the final online prediction f(?

ckalman
f

Xr = (1= )i +ax (12)
In the experiments, the data collection was run at 200 Hz and
the Kalman filter at 1000 Hz. The proposed Kalman filter is run
over trials by initializing the friction and restitution coefficients
(e, €) with the previous trial’s converged values.

E. EKF Behavior

The results for Impact aware EKF and Box only EKF for
Object 1 are shown in Fig. 3. We can immediately notice that
the Box only EKF (purple dashed line) takes overshoots and
converges once the box has reached its final position. In yellow,
one can see the prediction with Impact Aware EKF, which has
the following properties: One, it converges faster than the Box
only EKF Model. Second, as the number of hits increase and the
coefficients of friction and restitution converge, the final position
prediction becomes quite accurate in both, the simulation and
the real robot experiments. The convergence time improves by
~ 0.5s or ~ 44%. As observed, after around 15 hits (10) can be
used to predict the final position of the box after being hit online
as the values of p and € have converged.

F. Ablation Studies

The data collection framework’s requirements are to collect
data accurately and fast. The design decisions are based on the
time efficiency of data collection. Table Il reports the time taken
per data point for the dual arm system, and for the single arm
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Fig.3. From top to bottom: 1. Evolution of the EKF estimate of the estimated
object’s displacement after first hit, when the estimate of the friction p and
restitution e coefficients has not yet converged; 2. Evolution of the EKF estimate
for the 15" hit with known p and ¢; 3. Convergence of the estimates of 4 and
€; 4. Convergence time for EKF estimate of final object’s position across trials.

TABLE III
ABLATION STUDY ON TIME TAKEN PER DATA POINT ON DIFFERENT
FRAMEWORKS

Data Points ~ Total time (s)  time / data point (s)

Single Arm 60 ~ 7200 120
Dual Arm 2000 ~ 14400 7.20
Dual Arm (EKF) 3275 ~ 22500 6.87

setup (refer [6]). The time taken per data point improves by
94.3% with the design of the framework.

IV. DATA MODELING

A. Learning Model of Data Distribution

To encapsulate the stochastic nature of the relationship be-
tween the input, hitting flux (¢), and realized outcome, distance
traveled by the object (dg), we learn a full density model of the
joint probability distribution P(¢, dy) using Gaussian Mixture
Model (GMM). The model is trained through Maximum Like-
lihood, with k-means clustering for parameters’ initialization.
Bayesian Information Criterion is used to select the optimal
number of Gaussians in the GMM, (in this case, 2). The inverse
model to predict the desired hitting flux (¢*) given the initial
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All graphs show the distance of object traveled in relation to the hitting flux. Top left: In different colors are the points showcasing hits by different robots.

Top right: In different colors are the points showcasing different objects being hit. Bottom left: In different colors are the points showcasing hits by a robot in two
different configurations. Bottom right: Joint Probability distribution of the data modeled using a GMM with 2 Gaussians as determined using BIC criteria.

TABLE IV
DISTRIBUTION OF HITTING DATA

Robot Object  No. of data points  total data points
.. 1 1285
iiwa 7 ) 1005 2794
.. 1 979
iiwa 14 ) 1002 2481
Configuration of the robot ~ No. of data points
1 188
2 186

and the final desired position of the object, we compute the
expectation on the conditional probability ¢* = E(P(¢|dy).
Refer Appendix D for the details on GMM and GMR.

B. Data Properties and Learnt Model Assessment

The number of data points collected for each robot
type,configuration, and each object is detailed in Table IV, and
visually represented in Fig. 4.

Accuracy of desired flux prediction: We assess the accuracy
of the GMR prediction of the hitting flux for the desired object
distance through 10-fold cross-validation with a 70 % training /
testing ratio. Using GMR, for a desired distance traveled, hitting
flux is calculated and the mean RMSE for the desired and actual
distance traveled by the object for the calculated hitting flux. The
RSME (root mean squared error) in the desired and achieved
distance is 0.054m. We hypothesize that the learnt motion
model of the object will have some degree of generalizability
to the robot, its hitting configuration and the object. To calculate
the degree of agnosticism we calculate KL divergence of the
distributions of the object motion data when hit by different
robots and in different robot configurations. Kullback-Leiber
(KL) divergence measures the difference between two differ-
ent probability distributions, and hence can be described as a
measure of how much information is lost when one probability

TABLE V
KL DIVERGENCE AND RMSE FOR GMR PREDICTIONS USING SWAPPED
MODELS
Distributions KL_ RMSE RMSE
Divergence (m) 1|2 (m) 2|1
Robot (1, 2) 0.2950 0.079 0.082
Objects (1, 2) 0.4497 0.060 0.081
Configurations (1, 2) 0.9835 0.053 0.054

distribution is used to approximate another.

Drspa) = ¥ pmE
z€Data

In addition to the KL divergence values, generalization of the
models is tested by using a specific robot / object / configuration
model for prediction for hitting with the other robot / object /
configuration respectively and the RMSE errors for the achieved
and predicted distances are listed in Table V. The low values of
distributions of KL divergence values for the distributions with
different robots and different objects shows that there is a high
similarity in such distributions allowing us to use one object to
understand motion of the other and one robot to understand how
to hit with another robot. The distributions of hitting with two
different robot configurations and different robots have relatively
higher KL divergence value. This can be attributed to small
errors in inertia calculation using URDFs and its investigation
is part of the future work.

C. Transfer Learning

The presence of a degree of generalizability gives rise to the
idea that it should be possible to shift an object’s known motion
distribution to another object’s motion distribution using a few
data points, i.e., a robot having an idea of how Object 1 moves
could understand the motion of Object 2 through fewer data
points. We show the preliminary results of learning Object 2
motion model given the model for Object 1 by using incremental
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TABLE VI
KL DIVERGENCE VALUES OF LEARNING A MODEL THROUGH 1. SCRATCH AND
2. INITIALIZING THE MODEL WITH A KNOWN OBJECT’S MODEL

Data points 10 20 50 99 143 | 228 | 304
Scratch learning | 0.60 | 0.43 | 0.12 | 0.07 | 0.04 | 0.02 | 0.01
Transfer model 047 | 022 [ 0.09 | 0.08 | 0.04 [ 0.02 | 0.01

Fig. 5. Left: Inred is the robot reachable workspace and in green is the object
reachable space. Right: When the object cannot reach a desired position, we
utilize multiple robots to achieve the desired result.

SCORE AVG. 4.2

Fig.6. Indisc golf[18], the position ‘T” marks the place from where the player
throws the first shot. The out of bound area (where the disc is not allowed to go)
is marked by a white boundary. The shaded white area in the middle shows the
area that a good disc throw will lead the disc to lie inside. The scoring average
shows how many shots in average a player needed to reach the final goal position.

E-M algorithm. The GMM model for object 2 is initialized with
the parameters of the object 1 model. The hypothesis is that
learning a model through transferring a known model should re-
quire fewer data points. Model for object 2 is learnt with different
number of data points sampled uniformly from the data and KL
divergence is calculated with incrementally learned models and
the model learnt from the entire dataset, cross-validated 5 times.
Table VI shows the average KL divergence values. We see that
the transferred model is already require fewer data points to be
close to the actual model. Future research tackles understanding
how to learn better with fewer data points.

V. APPLICATION: OBJECT MOTION PLANNING

The motion model of an object allows us to also model “object
reachable space”, i.e., the area that an object can reach after
being hit, denoted by O. In Fig. 5, in green we show the object
reachable space and in red, the robot workspace. A robot can hit
an object anywhere in the green space, and using multiple robots,
we can increase the object reachable space, allowing placement
of objects outside the object reachable space of just one robot. To
position an object in an unstructured environment with multiple
robots (or multiple hits) resembles the sport of golf, refer Fig. 6
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where the first hit can be large inducing higher variability while
the last hit is the most accurate hit.

A. Modeling the Object Reachable Space, O

To generalize the object reachable space in any direction, the

following assumptions are made:

1) The friction between the box and the sliding surface is
isotropic, implying that the object reachable space of each
robot remains orientation invariant.

2) The distance between the initial robot end effector and
object initial position remains fixed, and so is the the
orientation of the object to that of the robot, represented
as 6.

While the object motion can be modeled as a GMM, it

also allows us to model the object reachable space. The object
reachable space of each robot O; is modeled using the GMM

P(xslxi,0)-

B. Optimization Problem

Problem statement: Determine the optimal orientation of the
robot 1, Ry, i.e., 6; around the initial position of the object x,;,
the optimal mid-trajectory position of the object X, .., and the
optimal orientation of the robot 2, Ro, i.e., 82 around X, ., with
the aim of having the object reach the final desired position, ¥, ¢,
given the boundary function for the available space B, the initial
position of the object X, ;, the target position of the object x,, ¢
and the object reachable space for Oy, O-.

1) Constraints: The object remains on the table throughout
its motion y, € B © ¢, where ¢ is a margin introduced to avoid
the object falling off the table.

2) Objective Function: We implement and compare two dif-
ferent objective functions, namely, total optimization and golf
optimization functions, and show how the golf optimization
solution works on the real robots.

Total Optimization Objective Function: This approach aims
to maximize the total probability of reaching the desired posi-
tion. To achieve this, the objective function is defined as follows:

Eotal(91,Xm,92) = Pl(Xm‘Xi»el)PQ(Xf‘Xm702) (13)

Golf Optimization Objective Function : Golf optimization
aims to maximize the probability of the last hit, specifically
maximizing the probability of reaching  ; on the last hit. Ad-
ditionally, a soft constraint (indicating an intersection between
the mid-trajectory position x,,, and O;) is added to ensure that
the probability of reaching x,, is close to a certain threshold,
(enabling robot 1 to hit the object to ,,, ) and ensuring a feasible
solution.

The objective function for golf optimization is defined as
follows:

Foit(01, Xm 02) = Pi(X¢f|Xm,02) + cPo(Xm|xi,01) (14)

Here, c refers to the weight the optimization function puts on
the first hit.

Optimization Problem: Considering the assumptions, con-
straints and objective functions defined above, the final opti-
mization problem is:

* % *
15 Xm> 02 = argmax F(ela Xms 92)
01,Xm 02

st. xo €EB6« (15)
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Total optimisation results to reach Xf = [0.5, 0.6]
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Golf optimisation results to reach Xf = [0.5, 0.6]
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The green cross represents the start position of the box and the black cross represents the final desired position of the box. The total optimization places

the central object position closer to the mean of a Gaussian where as the golf optimization places the final desired position closer to the mean of the Gaussian

representing the difference in likelihood of the final stroke.

Since the optimization function is either a product or a weighted
summation of probability density represented by GMMs, this
is a non convex problem. We use COBYLA solver that uses
linear approximation for constrained optimization, which is
efficient with a good initial guess but becomes less effective
as the number of variables increases [19]. For n robots, the
number of the variable to be optimized is 2n — 1. COBYLA is
generally preferred for only up to 9 variables [19], which limits
the number of robots to 5. In terms of worst time complexity,
linear programs are O(2"), although given the iterative solver
being used, the complexity is hard to define. Extensions of these
ideas to dynamic programming for solving sequential problem
is an area of future work.

C. Robot Experiments

Fig. 7 shows the optimization results and the difference
between the total and golf optimization methods. The golf
optimization places the Object reachable space GMM for the
second hit such that the final position is close to the means of the
Gaussians. The accompanying video contains two robots hitting
an object to its desired location, where it cannot go through a
single hit due to large distance and existence of an obstacle in
its direct path.

VI. DISCUSSION AND FUTURE WORK

In this letter we learn the motion model of an object subject
to an impulse by creating a probability distribution of hitting
flux and object distance traveled. The data is collected through
a semi-automated dual arm framework. The different kinds of
objects, robots and robot configuration used in hitting allow us
to understand better the difference in the distributions of the data
when such entities in the system producing the hit are changed.
An impact aware Extended Kalman Filter is introduced which
circumnavigates the discontinuity in the motion of the object
through a Gaussian hitting force model. The energy transfer
equations is used for the force parameter selection. The learnt
model is used in motion planning for movement of an object in an
environment where one robot cannot hit the object to its desired
location. The object motion model although incorporating the
way an object has been hit does not yet incorporate a model
of friction that is more complex than simple isotropic model
allowing one to assume motion of the object will be the same
regardless of any hitting direction. Other than incorporating
transferability of the object motion to unseen objects, another

future aspect is to control the pose of the object, thus including
its orientation, which also is affected by the friction between the
object and sliding surface.

APPENDIX A
COLLISION MECHANICS

Through conservation of momentum, we have:2
Jon (X, = X') = MoXon (16)
where A}, = (ETA’liL)’l [20] is the directional effective
inertia® at the point of contact in the hitting direction h, A is the
effective inertia which generally can be calculated as: A(q) =
(J(q)M~1(q)JT (q))~! [20] From the definition of restitution
(e) along the impact normal (h),

€ (X;h) = th - X:rh

. An o
+

=1+e|—
Xoh ( ) (A'h + m()) Xrh
We write the directional hitting flux as a scaled post-impact
object speed, independent of e.

An
®n o+, Xrh 19)

The robot is controlled for a desired value of ¢y,.

a7

(18)

APPENDIX B
PARAMETER SELECTION FOR FORCE FUNCTION

The hitting force is modeled as a Gaussian, defined by a
standard deviation parameter oo and amplitude ;. Where dx
is the distance between the hitting point on the object and the
hitting point of the end-effector. It is assumed that the work of
the hitting force over distance is equal to the kinetic energy of
the box after impact such that,

/ FilAx)dAx = Smxg ™. (20)
—00
Substitution and rearranging yields,
2,2
e D @1)
209V 21

2superscript — represents pre-impact and 4 represents post impact. Under-
script h represents the hitting direction.

3an = 2n(q), A, = Ap(q) are functions of the joint configuration, . At the
impact, ¢ is assumed to be constant.
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APPENDIX C
EKF PREDICTION AND UPDATE STEPS

The prediction step of the EKF consists of predicting the state
and covariance of the system at the next time step. Given the
current state estimate £*/*~1, covariance estimate P**~1, and
the system dynamics model:

£k|kfl _ f(:ikfl\kfl,uk) (22)

Pk|k71 _ FkPkfl\klekT + Qk (23)

where f(-) is the state transition function, F'* is the Jacobian
matrix of f with respect to the state, and Q" is the process noise
covariance matrix. The update step of the EKF incorporates
measurements to refine the state estimate. Given the predicted
state £¥1¥~1 and covariance P*/*~1, and a measurement z*, the
update equations are:

gk _ zk _ h(aﬂzk\kfl) (24)
Sk _ HkPk\klekT + Rk (25)
Kk _ Pk\klekTskfl (26)
ifklk _ @k\k—l + Kkgk (27)
P*F = (I - KFHY) P! (28)

where g* is the measurement residual, h(-) is the measurement
function, H* is the Jacobian matrix of h with respect to the
state, R” is the measurement noise covariance matrix, K" is
the Kalman gain, and I is the identity matrix.

APPENDIX D
GAUSSIAN MIXTURE REGRESSION

Assume we have the joint probability distribution of the data
which consists of both input and output. The probability that a
data-point ¢ = [O; I] (O being the output and 7, input) belongs
to a GMM is as follows:

K
P(C) = mN(C; ik, Si)
k=1
where 7, are the prior probabilities of the Gaussians of the GMM
and NV (C; pg, X ) are the Gaussian distributions composing the
GMM. uj, and Yy, are the means and covariance matrices of the
k" Gaussian and can be written as:

LTk Yrok

B | 2
k — 7]6_
u

Ok Yorr Yok

Once, we have the GMM, we compute the distribution of the
output variable O, given the input variable I and Gaussian k

P(O|I, k) ~ N (jir, Z)
where,
fix = por + Som Xt (I — prk)

Sk = Yok — oSt Srok
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Using the above equations, we can sum over all the Gaussians
to generate conditional expectation of O, given 1.

K K
= thﬂk, 3= Zhizk
k=1 k=1
where,
— N(T; pge, X
Sy N e, )

hi;
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