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In contrast to robots, humans can rapidly and elegantly modulate the impedance of their arms and 
hands during initial contact with objects. Anticipating collisions by setting mechanical impedance to 
counter near-instantaneous changes in force and displacement is one reason we excel at manipulating 
objects. We investigated the ability to set impedance in an object interaction task with rapid changes 
in force and displacement, like those encountered during manipulation in different directions. Subjects 
(n = 20) predictively co-activated antagonist muscles to adjust one component of the impedance 
– stiffness – to match the task demands before the movement began, irrespective of movement 
direction. Subjects adopted the minimal stiffness needed to complete the task, but when pushed to 
the most difficult condition, they were limited by their ability to produce high stiffness rather than 
large force. This robust and simple strategy ensured task success at the expense of energy efficiency. 
Our results confirm the ability of humans to predictively set and control mechanical impedance 
in task-relevant directions in anticipation of breaking contact. This offers the prospect that future 
investigations will find neural correlates of impedance, which in turn, could improve the ability of 
neuro-prosthetic limbs to interact with objects.

The modulation and control of mechanical impedance is useful for describing the control of interaction in 
modern mechatronic and robotic systems1,2. However, its importance in handling the transition between object 
interaction and free motion has received less consideration. Upon making or breaking contact, interaction forces 
change instantaneously, precluding or strongly limiting the continuous feedback control used in most robotic 
applications. Making or breaking contact not only causes an abrupt change in force that may induce bouncing, 
vibration, and instability, but also fundamentally changes the configuration of the control system. This is a 
fundamental challenge of robotics3,4.

In contrast, humans show a remarkable facility to adapt their motor control to physical interaction and indeed 
take advantage of it. We use intrinsic mechanical impedance as a key factor in the management of physical 
interaction5,6. Adjustable mechanical impedance can minimize the need for rapid, continuous, and precise 
feedback, handles instantaneous force changes, and even incorporates initial contact as part of a control strategy, 
for instance, when the hand conforms passively to an object. For this type of interaction, two factors play a 
critical role: predictive tuning of the end-effector impedance and tuning of perturbation-induced reflexes. Our 
work focuses on the first aspect. The biological means to change intrinsic mechanical impedance is determined 
by skeletal configuration and the simultaneous activity of multiple muscles7–11.

Cannon et al.12 showed that despite the neurophysiological complexity needed to control the mechanics 
of object interaction, the forces and resulting displacement of single joints are well described by a linear 
second-order dynamical model. The parameters of this model -- resistance (force) observed for variation of 
acceleration (mass), velocity (damping), and position (stiffness) -- competently describe the joint’s mechanical 
impedance. Impedance control was proposed as a theoretical framework - in human neuromotor control - to 
describe how humans handle their multiple degrees of freedom during posture and movement1,8. The work of 
Mussa-Ivaldi et al.13 found evidence consistent with these theoretical considerations. Numerous studies have 
estimated limb mechanical impedance in different combinations of single-joint/multi-joint and static/motion 
conditions7,11,14–18. Many of the developments in the algorithms for estimating impedance have been reported 
in a slightly different area of research, the study of the ankle joint19–21. A consistent conclusion of these studies 
is that mechanical impedance of both upper- and lower- limbs are inherently highly configuration dependent.

In addition to the influence of skeletal configuration on mechanical impedance, the tuning of the stretch 
reflex can also compensate for abrupt changes in muscle properties during task execution, thus contributing 
to the feed-forward cortical control of object interaction. The seminal work by Nichols and Houk22,23, and 
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Crago et al.24 highlighted how reflexes can compensate for variations in muscle stiffness. These results have 
been reconfirmed by more recent studies where subjects demonstrated the capability to tune their reflex activity 
during unexpected unloading tasks25,26, or during unstable physical interaction tasks27.

In this work, we focus on predictive impedance control to generate movements during physical interaction. 
In this context, four prior studies are especially relevant to our study as they estimated impedance during forceful 
interaction tasks. Perreault et al.9 described how two factors, force level and limb configuration, influenced 
mechanical impedance, albeit, during static posture. Franklin et al.28 confirmed that the central nervous system 
is able to employ impedance control to overcome instability with the environment. Burdet et al.29 found that 
subjects changed their muscle activity in a way that increased limb stiffness to stabilize an unstable task but did 
not require the subjects to generate a specific target stiffness.

We are interested in the way interaction forces are controlled during the transition between breaking object 
contact and very fast unconstrained motion. This issue is similar to that posed by Lacquaniti et al.30 who found 
that preparatory changes in muscular activity and impedance took place when catching a ball. In this type of 
task, object contact causes instantaneous changes in force and control must be predictive. To further study this 
type of control, we employed a ballistic-release paradigm6 in which subjects pushed against a handle with a pre-
defined force for a random duration after which the handle was released suddenly. The subjects were required to 
stop the released handle at a target position to succeed in the task.

In the study reported here, we addressed (i) whether humans are capable of tuning task-specific stiffness 
– dictated by the task demands – independently of the movement directions (different arm configurations) of 
the end-effector -- and (ii) what factors may limit the performance of this interactive task. To perform the task, 
subjects could either employ very fast feedback control or they could set their arm impedance predictively to 
reach the target position. Subjects solved the task using the latter strategy.

We found that end-effector stiffness was invariant with respect to movement direction, depending only upon 
target force and displacement specifications. While previous work has demonstrated task-dependent changes 
in impedance6,9,29,30, our experimental design, which makes this task challenging, demonstrates that the factor 
limiting performance of this task is the ability to generate stiffness rather than force. In addition, subjects 
consistently completed the ballistic-release task with the minimum required stiffness, suggesting an effort-
minimization strategy. Subjects predicted and adopted the appropriate stiffness consistently across different 
movement directions, showing that this control overcame the skeleto-muscular factors governing mechanical 
impedance. Pre-movement muscle co-activation was modulated with respect to task stiffness irrespective of 
the movement direction, suggesting that subjects tuned their mechanical impedance predictively. This learned 
strategy is efficient in that it minimizes the amount of information that needs to be transmitted during the 
movement, while being robust to context-dependent changes in the mechanics of the actuators.

Methods
Participants
20 healthy adults, ages 18 to 45, 13 males (height 160–188 cm and 50–113 kg weight) and 7 females (157.5–
168 cm and 52.2 to 62.1 kg weight) participated in the experiment. All of them were right-handed; reported no 
neuro-muscular injury or disease; and consented in written form prior to their participation. The experiments 
conformed to a protocol reviewed and approved by the Institutional Review Board (IRB) at the University of 
Pittsburgh. Among the 20 tested subjects, one subject was eliminated from the analysis because the required 
experimental protocol was not followed correctly. In addition, subject 14 reported difficulties in successfully 
completing the lowest stiffness condition in the backward movement direction. This subject consistently fell 
short of the target position and compensated by making small terminal position corrections. The data from this 
subject in those specific conditions were therefore removed from our analysis.

Robotic control
A WAM arm robot (Barrett Technology, Cambridge, MA), a 4-degree-of-freedom (DoF) back-drivable 
motorized linkage that allows control of force and impedance with a control loop frequency of 500 Hz, was used 
as the experimental platform. The robotic arm was configured to utilize its lowest-damping joint to minimize 
joint friction and other intrinsic non-linearities that could interfere with the task. The robot was set in its gravity-
compensation mode to remove interactions due to gravitational forces.

The WAM was configured such that its endpoint moved primarily in a horizontal plane. Prior to release, 
the robot’s endpoint stiffness was maintained at 300 N/m on all three axes. This generated a point constraint at 
the manipulandum. Then, to implement the ballistic release, the stiffness was decreased abruptly to zero in the 
movement direction, while it was maintained at 300 N/m in the other axes. This produced a linear constraint on 
the motion of the manipulandum.

Experimental setup
A handle was mounted on the WAM endpoint via a force transducer (Net F/T, ATI Industrial Automation, NC). 
An infra-red motion tracker (OPTOTRAK 3020, Northern Digital, Canada) recorded the handle’s 3D position 
at its tip. Other landmarks such as the subjects’ elbow and shoulder joints (identified by anatomical landmarks) 
were also recorded using the motion-tracking system for analysis presented in supplementary material. Subjects 
grasped the handle placed about 30 cm in front of their torso using their right hand as shown in Fig. 1A. The 
gravitational load on the arm was canceled by a sling connected to the ceiling at one end and holding the upper 
arm of the subject at the other end. The length of the sling was adjustable such that when the subject grasped 
the handle, their arm configuration was within a horizontal plane. The sling compensated for the gravitational 
load on the subject’s arm while allowing free movement of the arm in a horizontal plane (Fig. 1A). We would 
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like to emphasize that this approach is not novel to this work. Support to make the task planar has been used as 
a standard in human motor control research.

Visual feedback was provided to the subject on a screen placed about 120 cm away from the subject’s eyes 
(Fig. 1A). The feedback was composed of the planar position of the handle in the form of a filled circle, whereas 

Fig. 1.  Experimental setup and design. (A) Subjects sat in a chair and interacted with the WAM arm 
via the handle during the experiment. The subject’s arm was supported by a sling to avoid gravitational 
load and fatigue. A display screen provided feedback of the endpoint position and the force and position 
targets. (Created using Procreate for iPad, 2024, Savage Interactive Ltd., https://procreate.com) (B) WAM 
configurations for different directions. Subjects performed the task in four directions [+ X/-X and + Y/-Y]. 
The subjects’ positions were changed for the task in different directions. (C) Task-state diagram: A successful 
trial was composed of four consecutive phases: force ramp, force hold, ballistic move, and position hold. 
Subjects exerted and maintained a certain force against the handle for the first two phases. After a randomized 
duration (≥ 500ms) of force hold, the handle was suddenly released and began to move ballistically. Subjects 
were then required to maintain the target position (1 s). The force exertion and ballistic movement occurred 
in the same direction. The position of the handle was depicted as a circular blue cursor; the target position 
and required interactive force were depicted as colored rectangular bars. The target bar during force hold was 
displayed as green when the correct force was exerted and was otherwise yellow or red when the exerted force 
was (respectively) lower or higher than the target range. During the movement phase, the bar turned green 
when the subject reached the required position target. (D) Recorded, filtered (70–300 Hz) and rectified surface 
EMG from eight muscles. Signals were further smoothed (not shown here) for analysis (refer to Figs. 9 and 
10). Electrodes are shown in the approximate location of the targeted muscle groups. [Arm muscle illustrations 
from commons.wikimedia.org]
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the exerted force and the target position were presented as colored rectangular bars. To prevent excessive 
movement of the torso, subjects were harnessed to a wooden chair with a rigid back (harness not shown). A 
wrist brace was used to constrain wrist rotations.

Surface electromyographic (EMG) sensors were placed on eight upper-limb muscles. The signals were 
amplified (Octopus recording system, Bortec Biomedical, Canada) and recorded (Cerebus, Blackrock Neurotech, 
UT) at 2000 Hz. In post processing, the signals from the entire session were first high-pass filtered at 10 Hz to 
remove any drift. The EMG signals from individual trials were then band-pass filtered (70–300 Hz) and rectified. 
The rectified signal, for each muscle, was then smoothed by applying a moving-average zero-lag filter with a 
fixed time window of Tw = 10 ms. Finally, the individual EMG signals were normalized for each subject to the 
maximum EMG activity observed across all conditions and directions.

The task was performed for movements in four directions – Right (+ X), Left (-X), Forward (+ Y) and Back 
(-Y) as shown in Fig. 1B. To avoid a possible confound due to robot behavior varying with direction, we fixed 
the robot configuration and rotated the subjects around it. Data collected during the task included the robot 
joint angles (robot encoders), the interactive force between the subject and the robot (force transducer), the 
subjects’ joint angles (infra-red motion tracker), the handle position (infra-red motion tracker) and surface 
EMG from eight muscles (Octopus EMG recording system). A custom-built software system, RTMA, (Real-
Time Messaging Architecture)31 was used to communicate between the different experiment modules to control 
the task and provide visual feedback to the subject.

Trial paradigm
The experiment was designed to encourage subjects to preset their arm end-point impedance based on the force 
and displacement conditions prior to initialization of the movement. To complete this challenging task, it was 
necessary for subjects to learn, through trial-and-error, how to anticipate the mechanical aspects of the required 
movement. Learning was facilitated by employing a block design as detailed later in this section. A total of three 
forces [15 N, 20–25 N] (tolerance ± 2 N) and three position targets [2.5 cm, 5–7.5 cm] (tolerance ± 1 cm) were 
selected such that the nine combinations of these parameters resulted in a wide range of expected stiffnesses 
from 200 N/m (15 N and 7.5 cm) up to 1000 N/m (25 N and 2.5 cm). The tolerance for forces and displacements 
was not displayed to the subjects directly but was provided so the subjects could still succeed in the task if they 
exerted force or stopped in target position within the allowed range.

Subjects initiated a trial by pressing a button placed to one side of the handle. The button-press step allowed 
us: (i) to zero the force measurement to compensate for drift noise from the force sensor; and (ii) to set the 
robot to its home configuration for the upcoming trial. The button-press also helped subjects relax their arm, 
marking a distinct break between trials. After the button push, the actual task began. The task state (Fig. 1C) was 
separated into four phases – force ramp, force hold, movement, and position hold.

Subjects were initially presented with a position target, which was displayed as a yellow vertical bar and the 
handle position as a blue cursor. Force feedback was presented by turning the bar green when the desired force 
during the force hold phase was achieved and yellow or red when force was (respectively) below or above the 
target force range. The cursor and feedback display were rotated for the forward/backward movements to keep 
the visual display aligned with movement directions.

For all analyzed directions [+ X/-X, +Y/-Y], the direction of force generation and that of the movement were 
aligned. In other words, the ballistic release movement was performed in the same direction as the exerted force.

In the first two phases, force ramp and force hold, subjects grasped the handle and exerted force against 
the robot. When the target force was reached, the displayed bar turned green. The robot control was designed 
to guarantee that the hand position would be the same irrespective of the target force i.e., the end-effector 
displacement during the “Move” phase was measured from the relative position of the “Force Hold” phase. 
Subjects had to maintain the exerted force within a range of ± 2 N for a random amount of time (0.5s to 2s) 
before it was removed abruptly, leading to a ballistic movement. A successful trial was accomplished if the 
subject stopped in the specified target zone and remained there for 1 s.

To ensure that subjects complied with the task specifications, performance was deemed a failure if: (i) the 
subject could not hold the force within the required range; (ii) the subject did not reach the position target 
range within 500 ms after release; or (iii) the subject made any corrective movement after stopping near the 
target. Corrective movements were detected as abrupt changes in velocity of the hand after the subject was 
in the position-hold phase of the trial. Minimizing corrective actions was intended to encourage subjects to 
predictively set the required end-effector arm impedance during the force hold phase. Subjects could move freely 
upon handle release with the stipulation they reached the target within 500 ms and maintained the final position.

To promote learning of the task specifications, the trials were performed in blocks, where each block 
consisted of repeated trials with the same force and position target conditions. Subjects had to successfully 
complete at least 9 trials to finish one block. The blocks were presented in a randomized order to prevent patterns 
of increasing or decreasing force or stiffness and to avoid subject fatigue. However, the sequence remained 
consistent across all subjects. We did not randomize the sequence across subjects as the number of samples 
(i.e. number of subjects = 18) was not significantly larger than the number of conditions (i.e. 9 conditions). 
Keeping the same order also allowed us to provide a clear illustration of the effect of the transition between 
conditions across subjects. Since we chose a combination of three force and three distance conditions, with each 
condition requiring nine trials, the subject performed a total of at least 81 successful trials in each direction. 
Nine blocks (three forces x three directions) were performed in each of the four directions: +X, -X, +Y, and 
-Y (Fig. 1B). Lateral/medial movements were made in the “X” direction and “Y” denoted anterior/posterior 
motion. To familiarize the subjects with the task, we showed them a video clip describing the required task and 
allowed them to perform a tutorial block before beginning the experiment. The first condition block was also 
used to allow the subject to become familiar with the task and find a strategy to succeed. We therefore repeated 
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the first block at the end of the experiment. This latter block was used for data analysis. Learning effects were 
described by calculating the number of failed trials before a successful trial. If learning within a block took place, 
the number of failed trials before success should decrease with successive trials. For simplicity, we only used 
those trials in which the handle was released after the subject maintained the specified force level during the 
hold phase.

Impedance parameter estimation
The arm end-effector behavior was modeled as a second-order mechanical system i.e., a mass-spring-damper 
system as depicted in Fig. 2.

The second-order model used in our analysis contained stiffness (k), damping ( β ) and mass (m) coefficients 
corresponding, respectively, to the equivalent endpoint stiffness, damping and inertia apparent at the handle. 
Equation 1 presents the system transfer function.

	
x (s)
F (s) = 1

ms2 + β s + k
= 1/m

s2 + 2ζ ω ns + ω 2
n

where s is the Laplace variable, ω n =
√

k
m  represents the system undamped natural frequency (rad/sec), and 

ζ = β

2
√

km
 represents the system damping ratio (dimensionless).

We used the measured force and displacement at the handle to estimate the impedance parameters (mass, 
damping, and stiffness). These quantities were measured respectively by the force sensor mounted between the 
robot and the handle and by an optical marker placed on the tip of the handle and measured by the Optotrak 
system.

For each trial, the force and position recordings were used to perform parameter identification based on 
continuous-time system identification with the Instrumental Variable (IV) method32–34. MATLAB™’s system 
identification toolbox was used to perform the computation. The fit of the estimated model was computed as:

	 F IT % = 100(1 − NRMSE)

where NRMSE represents the normalized root mean squared error between the experimental displacement and 
that predicted by the identified second-order model.

EMG co-activation analysis
The recorded and post-processed EMG signal ( α ) during the force-hold phase was averaged across trials for 
each condition, subject, and direction. We used a co-activation index (CAI)35 as a measure of co-activation of 
the two pairs of agonist and antagonist muscles as per equation:

	
CAI = EMGl

EMGh
(EMGh + EMGl)

EMGl = min (α 1, α 2) EMGh = max(α 1, α 2)
The recorded EMGs from eight muscles were grouped into four pairs of agonist and antagonist muscles 

(FCR-ECU, Bicep-Triceps, Anterior Deltoids-Posterior Deltoids and Pectoralis-Trapezius).
For each trial, EMGl is the lowest of the average force-hold phase EMG recorded from the two muscles 

( α 1 , α 2) whereas EMGh is the highest recorded EMG. The CAI is defined such that the simultaneous increase 
of both muscles will lead to a higher index, rather than individual muscle increase. The CAI was linearly regressed 
with the estimated task stiffness, force, and displacement (i.e., the conditions) for each subject and direction. The 
coefficient of determination R2 was computed for each subject and direction.

Fig. 2.  The second-order dynamic model. The model describes arm behavior as a system with only 3 ideal 
components: a spring ( k), damper ( β ), and mass ( m). It also has a nominal position ( x0). The model input 
is force; the output is position. The mathematical relations on the right side of the figure show the time-domain 
and Laplace-domain dynamic equations of the modeled system.
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Statistical analysis
The statistical analysis was performed using the SPSS statistical software package (SPSS Inc., Chicago, IL) with 
a significance level set to 5%. A statistical test was used to study the effect of direction on success rates. Two 
additional tests were performed to investigate the effects of the force-displacement conditions and of direction.

One-way, within-subject, repeated measures analysis of variance (ANOVA) was performed to examine 
the influence of the four different directions (+ X, -X, +Y, and -Y) on the success rates of subjects. Force and 
displacement conditions were grouped for each subject. Post-hoc t-tests analyzing the main effects of the 
independent variable direction on the dependent measure were performed.

Linear regression was used to examine the influence of the estimated end-effector stiffness on the success rate 
in the four different directions (+ X, -X, +Y, -Y).

The influence of target force and target displacement on the three dependent measures (stiffness, damping, 
and mass) was examined with ANOVA. Separate analyses were conducted for the damping and mass dependent 
measures in four different directions: +X, -X, +Y, and -Y. For the stiffness dependent measure, a single ANOVA 
was performed by grouping the four different directions as random factors. This was done to simplify the 
statistical analysis without compromising accuracy since direction did not have a substantial influence on the 
stiffness parameter (please refer to the Supplementary Material for details).

In the case of significant interaction, post-hoc t-tests analyzing simple main effects of the independent 
variables force and displacement on the dependent measure were performed. ANOVA was also used to study 
how direction was related to stiffness, damping, and mass. Separate analyses were conducted for each of the 9 
force-displacement conditions. Post-hoc t-tests analyzing main effects of the independent variable direction on 
the dependent measure were performed.

The p-values of post-hoc t-tests were adjusted using the Bonferroni procedure, where the original p-values 
were adjusted for the number of comparisons ( m) by p = porig · m (standard method of Bonferroni correction 
in the SPSS software package adopted for statistical analysis). Detailed results are shown in Supplementary 
Tables 2–13.

For the stiffness estimates, we also compared the mean stiffness – computed for each subject across trials and 
directions – with the expected stiffness at each target force and displacement condition. The expected stiffness 
was computed as the ratio between the target force Ftg  and the target displacement Xtg .

Results
The following sections present the significant findings from our experiments. First, we explained the dynamics of 
the subjects using a simple a second-order model (mass-spring-damper). The model fit the data well (Section III 
A) irrespective of whether the subject failed or succeeded in the trial. Next, we showed that subjects could learn 
the task-dependent impedance and that they were capable of adapting and learning different arm impedances 
(Section III B). The most critical parameter in describing the behavior was stiffness (Section III C) which was 
minimized by the subjects as they succeeded in the task (Section III D). Finally, we showed that subjects co-
activated antagonist muscles before moving to set the stiffness of their arms predictively (Section III E).

Ballistic release follows a second-order model order model
Figure 3 shows an example of a recorded subject’s force and position data in one task direction (subjects exerted 
very little force in directions orthogonal to the movement directions) across the nine force-displacement 
conditions. Data were aligned at the time of handle release. Prior to release, the force was approximately constant 
and equal to the required target force ± 2N . At the time of release, the force decreased sharply towards zero and 
then changed in a complex manner as the arm moved smoothly toward the target. For higher force conditions, 
there was an overshoot in both force and direction about 250 ms after release. The subjects were allowed a 
maximum movement time of 500 ms.

The linear second-order model had an excellent fit (FIT% > 85%) to the data in all trials and conditions (force 
and displacement), irrespective of failure or success (Supplementary Fig. 4, Supplementary Table 1), even though 
several features of the underlying neurophysiology (e.g., reflexes) and mechanics (e.g., intrinsic friction of the 
robotic manipulandum) were omitted from the model. The effect of these omitted features can sometimes be 
seen in the force profiles of Fig. 3 after release ( t ≥ 0 s).

We found that the stiffness estimates from the second-order model were correlated with the task conditions 
(target force and target displacement). Mass estimates were roughly constant across conditions. This was 
expected, since, in a given direction, the overall mass of the robotic apparatus and the subject’s arm only 
negligibly changed due to a rotation of the end-effector mass ellipse. Consistent trends in the damping ratio 
were not observed across subjects. An in-depth analysis of the mass, damping and stiffness effects on movement 
distance are provided in the Supplementary Material (Section E, F and G).

Subjects learnt to set the impedance to succeed in the task
Subjects performed the task within blocks where for a given task condition, they had to succeed in 9 trials to 
complete the block. The performance across blocks within a single direction was described by a performance 
metric calculated as the number of failed trials before a successful trial was performed (Fig. 4). The number 
of failures increased at the beginning of a new block (i.e. a new task condition) and decreased with successive 
trials within the block. This was especially evident for the more difficult cases such as those requiring high force 
and short displacements (marked by magenta arrows, Fig. 4). Subjects had low failure rates in cases where the 
stiffness conditions were easier to achieve. The failure rate also dropped within a block, suggesting that the 
subjects were able to learn how to set the correct stiffness to complete the trial. These trends were observed in 
all directions. It should be noted that each trial began with a button push, disrupting the arm configuration used 
to hold the handle of the manipulandum at the beginning of each trial. The learned stiffness was retained even 
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when the arm configuration changed transiently during button push. The first block (20 N, 50 mm) was repeated 
at the end of session and subjects again failed at the beginning of this repeated condition, suggesting that there 
was minimal carry-over of the learned behavior between blocks.

Arm stiffness covaries with task condition
Results from the model fit the experimental data well for all subjects (FIT > 88%) and show that stiffness, 
damping, and mass for a given condition showed comparable values across subjects and directions (Fig. 5 and 
Supplementary Figs. 7, 8). However, only stiffness was condition dependent. A sensitivity analysis showed that 
stiffness was the most powerful explanatory parameter as changes in its value caused large changes in the model 
fit (Supplementary Fig. 2). Changes of ± 30% from the estimated stiffness caused drops of the FIT of up to 70%. 
Equivalent damping and mass deviations from the estimated values showed a smaller effect on the FIT %. The 
averaged measured stiffness across subjects did not change with respect to movement direction in all 9 force-
displacement conditions and was only affected by target displacement and target force—i.e., it was dictated by 
the task (Fig. 5, bottom).

Figure 6 shows the estimated stiffness for the successful and failed trials. We divided the data into low stiffness 
cases (less than 500 N/m) and high stiffness conditions (greater than 500 N/m). There was no difference between 
successful and failed trials for the mass and damping estimates. In contrast, for trials in which the required and 
measured stiffness differed (high stiffness conditions), the subjects tended to fail more often, indicating that for 
this condition, the subjects had difficulty setting the required stiffness. This suggests that stiffness may be the 
limiting factor for successful trials.

ANOVA analyses indicated that force and displacement interacted across conditions and that both had 
significant effects on stiffness. Although there was a significant effect of direction on stiffness, it was not 
substantial (Supplementary Material).

The bottom group of plots (nine plots) shows the stiffness change in the different force-displacement 
conditions with respect to the four directions of motion. The light blue shaded areas represent the range of 
stiffness that subjects should reach to successfully complete the task, while the dashed line represents the expected 

Fig. 3.  The force and displacement data for different conditions for subject 8 in direction + X. Target force 
(blue curves) conditions vary by row, while columns display different target displacement conditions (red 
curves). For each panel, the left y-axis shows the force (blue), and the right y-axis represents the displacement 
(red). The gray lines represent individual trials for each condition. The blue solid line shows the average force 
profile. The solid red line shows the average displacement. The dashed purple line shows the displacement 
predicted by the model. For every panel, we report the fitting performance of the model with respect to the 
experimental data.
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stiffness ktg = Ftg

Xtg
. The extremes of the light blue shaded area represent the maximum kmax = Ftg+Ftol

Xtg−Xtol
 

and minimum kmin = Ftg−Ftol

Xtg+Xtol
 stiffness, respectively. Ftg ; Target force, Xtg ; Target displacement, Ftol ; Force 

tolerance = 2 N, Xtol ; Displacement tolerance = 1 cm. Error bars in both plots show one standard deviation.

Subjects minimize end-point stiffness
Since we allowed some tolerance to the subjects for the required force (± 2N) and the target position 
(± 1 cm), the equivalent stiffness is not a single value but rather a range as shown in Fig. 7 (blue and green 

dashed lines). We found that the estimated stiffness for all subjects was always below the expected stiffness 
(specified force/specified target distance). The difference between the expected and estimated stiffness increased 
linearly with the expected stiffness. In fact, we observed that the average measured stiffnesses aligned well with 
the minimum stiffness that could be used as a single factor to complete the task.

Moreover, this was found to be true whether the subjects succeeded or failed the trial as shown in Fig. 8. 
The figure shows the estimated stiffness for all subjects and all trials across the full session (shown here + X, +Y 
direction). Since each subject could have a varying number of trials, we rescaled the trial index for each subject 
so that they all had a total of 110 normalized trials and could be shown in the same plot. The estimated stiffness 
(red and green lines) was always below the expected stiffness (blue bar) and at the lower end of the allowed 
range (blue shaded area) for all subjects. Similar behavior was observed in the -X, -Y directions (Supplementary 
Fig. 5). This suggests that subjects consistently set their stiffness near the minimum value needed to succeed in 
the task. It is important to note here that, in all the trials, the subjects could easily exert and maintain the desired 
force. Thus, it was the stiffness that became the limiting factor for the subjects to succeed in the task.

EMG shows predictive stiffness tuning by co-activation of muscles
Co-activation of antagonist muscles can increase the impedance of the limb. We recorded the EMG of eight 
arm muscles in our subjects and used a co-activation index (CAI35 as a metric of antagonist muscle pair co-

Fig. 4.  Failure rate over the entire session for the four directions averaged across all subjects. The vertical bars 
indicate the start of a new task condition. The subjects failed more trials when the condition was changed, 
especially in blocks highlighted by magenta arrows, as they required some trials before adapting to the new 
task conditions.
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Fig. 5.  Arm stiffness variation across subjects. The top group of plots (4 plots) shows the stiffness change 
with respect to force and displacement in the four directions: +X (top left), +Y (top right), -X (bottom left), 
-Y (bottom right). For each panel, the nine different force-displacement conditions are presented: the x-axis 
shows the different target displacements, and the three colored lines represent the different target forces. The 
last column of vertical circles shows, as a reference, the estimated stiffness from Perreault et al. (2001) in the 
+ X, +Y and -Y directions. Perreault et al. computed the end-point stiffness for different values of exerted force 
ranging from about − 50 N to about positive 50 N, and different directions. Here we report only the stiffness 
estimates for the same levels of force tested in our experiment (15, 20, 25 N), as well as the minimum (Min) 
and maximum (Max) stiffness measured the in Perreault et al. experiment.
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activation. Although all muscles were differentially active across directions, only the wrist muscles (Flexor Carpi 
Radialis and Extensor Carpi Ulnaris) were consistently active in all directions (Supplementary Fig. 13A). We 
used this pair as an example to show how EMG was related to the different task conditions (Fig. 9), with the 
remaining muscle activations shown in Supplementary Fig. 13B. In the pre-movement, force-hold portion of 
the task, the modulation of EMG activity was small, with a slight tendency to increase with higher stiffness 
conditions. The mean EMG for both flexor and extensor were well-correlated with stiffness (Fig. 9B). The CAI 
for this pair of force-hold EMGs was calculated and found to be strongly correlated to the subject’s stiffness as 
it varied across task conditions (R2 = 0.81, Fig. 9C). The coefficients of determination ( R2) of the CAIs with 
respect to the estimated task stiffness, the magnitude of force during the force-hold, and the target displacement 
are plotted in Fig. 9D. The CAI of these wrist muscles were well related to stiffness with a median R2=0.64 and 
IQR2 = [0.39 0.81] . The co-activation of the remaining muscle pairs was also well related (R2 = 0.62) but only 
in the directions in which they were active (Supplementary Fig. 13B).

Fig. 7.  Comparison between the expected and experimentally measured stiffness. The expected 
stiffness is the ratio between the specified target force and the specified target displacement. Black 
circles represent the measured stiffness of each subject (across trials and directions), while the red line 
is the average measured stiffness across subjects. The dashed lines represent, from top to bottom, the 
maximum kmax = Ftg+Ftol

Xtg−Xtol
 (green dashed), expected ktg = Ftg

Xtg
 (black dashed), and minimum 

kmin = Ftg−Ftol

Xtg+Xtol
 (blue dashed) stiffness. Ftg ; Target force, Xtg ; Target displacement, Ftol ; Force 

tolerance = 2 N , Xtol ; Displacement tolerance = 1 cm.

 

Fig. 6.  Parameter estimates for successful and failed trials. The data was divided into trials of the high stiffness 
condition (nominal stiffness ktg > 500 N/m, red) and the low stiffness condition (ktg < 500 N/m, green). For 
high stiffness conditions, the estimated stiffness was below the required stiffness when subjects failed the task. 
For low stiffness conditions the estimates for failed and successful trials were statistically similar. However, no 
difference was found in estimates of damping and mass between successful and failed trials suggesting stiffness 
to be the critical parameter. (*** = p < 0.001)

 

Scientific Reports |        (2025) 15:29916 10| https://doi.org/10.1038/s41598-025-14989-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Subjects changed their wrist muscle co-activation in a task-dependent manner to anticipate the motion of 
the manipulandum when it was released at the end of the position-hold portion of the task. This change can be 
interpreted as a task-dependent variation in wrist stiffness. After release, the handle moved rapidly, stretching 
and shortening muscles throughout the arm. Stretch-related reflexes are evident in the EMG activity. This reflex-
related activity in the wrist extensor began approximately 50 ms after release and peaked about 30 ms later 
(Fig. 9A). The reflex activity is further detailed in Fig. 10. The wrist extensor EMG increased during the reflex but 
the response in the flexor did not (Fig. 10A). This difference is emphasized in the mean EMG plots of Fig. 10B. 
The wrist EMG of both the flexor and extensor muscles increased with stiffness but not as strongly as in Fig. 9B. 
Stiffness-related co-activation during the reflex was also not strongly correlated to stiffness as evident in the 
reflex-response of this subject (R2 = 0.48, Fig.  10C). Across subjects (Fig. 10D), the correspondence between 
reflex-associated co-activation and stiffness was weaker than during the force hold period. This reduction in co-
activation during the movement may be transient as the CAI-stiffness correspondence increased in the position-
hold period to nearly the same values as the force-hold phase, across subjects (Supplementary Fig. 14).

Discussion
The human control of hand impedance/compliance far surpasses that of robots and even other primates36–38, 
giving us an unparalleled ability to use tools such as a wrench to loosen a stuck bolt. Our results show that, in 
challenging interaction conditions, subjects set their arm impedance even before the movement occurs as a 
strategy to achieve a goal within the constraints of both the task and the motor system. This strategy is robust to 
directional changes in the mechanics of the musculoskeletal system – which can be substantial – suggesting that 
anticipatory impedance setting may be a fundamental aspect of human motor control. Such a strategy may be 
employed in situations where neural sensory feedback would not allow for sufficient control. Common examples 
include extending the leg and foot to make surface contact during locomotion20. The “roll-on” event between 
heel strike and foot flat occupies about 100 ms yet the neural transmission delay between peripheral sensing and 
spinally mediated mechanical responses is about 70 ms, while supra-spinally mediated responses may occur 
much later, suggesting that impedance is pre-set in anticipation of contact. Reaching to grasp an object provides 
another example. Conforming the fingers to exactly match the object shape (which may be poorly known i.e., 
when based on partially occluded visual data) is not necessary if the compliance of the hand and fingers is 
exploited39. The idea that compliance could be simply controlled by setting a balance between pairs of opposing 
spring-like muscles was the essence of the “equilibrium-point hypothesis” proposed almost sixty years ago40. 
The general concept of predictive impedance setting is incorporated into the theory of “impedance control”1,2.

Our results are consistent with a study using a similar paradigm in which perturbations were applied as 
subjects exerted force in two directions9. That study found a range of stiffness comparable to ours (see circles 
on the side of the plots in Fig.  5, top panel). However, their study did not require subjects to anticipate an 
upcoming movement. The behavior we observed is consistent with the original equilibrium point hypothesis in 
which a pattern of agonist and antagonist muscle activation acts as a pair of opposing springs to set a balance 
or equilibrium position before movement begins40,41. Once moving, the limb will subsequently come to rest 
at the equilibrium point. While details of the movement trajectory could emerge from peripheral neuro-
mechanics42,43, subsequent research demonstrated that this was not a complete description of the neural control 
of reaching44,45. Nevertheless, the “final position control” version of the equilibrium point theories provides the 

Fig. 8.  Stiffness estimates across sessions for all subjects in two directions. Since the subjects can have 
varying numbers of trials, we rescaled the index of the trials for each subject so that they could all be shown 
in the same plot. Gray sections show the failed trials between the last successful trial of one block and the 
first successful trial of the next. Dots represent the estimated stiffness for each trial where green represents 
a successful trial, red represents failure due to time-out and black dots show failed trials due to corrections 
during movement. The blue bars show expected stiffness ktg = Ftg

Xtg , and the blue rectangle shows the range 
of stiffness based on the allowed force and displacement thresholds. The red line shows the average estimated 
stiffness for failed (time-out) trials whereas the green solid lines show the average estimated stiffness for 
successful trials.
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most parsimonious account of our observations. Although we cannot rule out a pre-determined time course 
of neural activity based on some form of internal model of limb dynamics, the uncertain moment of release 
would make it difficult to time this neural trajectory appropriately and this may be a “good enough” form of 
control46, deployed when more sophisticated control strategies are unnecessary. This conclusion is supported 
by a recent study47, which used ballistic release in different directions to show that, when subjects generated 
different stiffness by changing grip force, their movements terminated at an equilibrium point in open-loop 
conditions. Future models of human motor control should be able to account for these characteristics of task-
specific behavior48–50.

Fig. 9.  Task-related EMG. (A) EMG recorded from FCR and ECU in a single subject moving in the -Y 
direction for the 9 different stiffness conditions. Each signal was normalized by its maximum value across all 
recordings (αmax). The EMG of both muscles was fairly constant during the hold phase. Both increased with 
task stiffness compared to the intertrial interval. There was noticeable modulation of the ECU starting 30–50 
ms after the handle was released (Time = 0) and peaking approximately 30 ms later. In the terminal hold phase, 
the EMG was again constant and similar to that during the pre-release hold period. (B) EMG averaged across 
trials for different task stiffnesses during the hold phase. The EMG from both muscles increased with stiffness. 
(C) A co-activation index (CAI) between the two muscles was calculated for each task condition and was 
highly correlated with the estimated stiffness. (D) Across all subjects, the CAI was better related to stiffness 
(R2 = 0.64) than to force (R2 = 0.22) or displacement (R2 = 0.36).
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Our findings also show the importance of predictive control and the possibilities of improving robot 
performance during physical interaction, for example using ‘soft’ or ‘compliant’ robots. The modern emphasis 
on ‘soft’ robots with intrinsically low stiffness builds on research into variable-impedance actuators dating back 
a couple of decades51,52. While numerous elegant designs and solutions have been proposed53–59, the challenge 
of how best to ‘manage’ or control these actuators remains unsolved60. Our study demonstrates that predictive 
tuning of mechanical impedance may be ‘good enough’ to achieve effective control of physical interaction.

Task difficulty
The overall task was particularly challenging, showing an average success rate of about 64% ± 19% across 
different directions (Supplementary Fig. 1). The subjects however could generate large forces, generally related 
to their body mass (Supplementary Fig. 6). We used a block design where the task condition (specified force 
and displacement) were the same across repeated trials. This allowed subjects to learn how to set their arm 
impedance to compensate for the sudden handle release. Initial performance declined at the beginning of 
each block with a new condition (Fig. 4), showing that negligible between-block learning took place, and then 
improved across repeated trials. In the higher stiffness conditions (short displacement and high forces), they 
had difficulty capturing the target and attributed this to a lack of strength. Indeed, Fig. 6 shows that the subjects 
could not generate high enough stiffness in these cases, leading to failures. The damping and mass parameters 
remained unchanged between successful and failed trials suggesting that stiffness generation was the critical 
factor in the subjects failing the task. Interestingly, Figs. 7 and 8 suggest that subjects consistently minimized 
the stiffness to complete the task, irrespective of whether they succeeded or not, even in case of low stiffness 
conditions. All subjects could generate three levels of force but struggled to reach high levels of stiffness (Figs. 3, 
6 and 7). This suggests that they were limited not by the amount of force required, but by the amount of stiffness. 
Our experimental design did not include randomization of the presentation of condition blocks across the 
different subjects. This could raise the possibility that the overall sequence of blocks may have a weak influence 
on the inter-subject analyses.

Variation of mass, damping, and stiffness
We found that a simplified 2 DoF (shoulder and elbow) arm model using arm inertial properties and the 
measured experimental force and displacement to calculate impedance12 described our data well (FIT% > 88%) 
whether the subjects succeeded or failed in the trials (Supplementary Fig. 3). We used the force-displacement 
data from the entire task to accurately fit a constant stiffness. This suggests that despite the presence of higher 
order behavior such as stretch reflexes or friction in the robotic manipulandum, the stiffness remained roughly 
constant throughout the task.

As aforementioned in the introduction, changes in end-point stiffness can be obtained either by (i) actively 
tuning the joint stiffness, or by (ii) passively modifying the arm configuration. The developed model also showed 
that stiffness changes due to variations in arm configuration had a negligible influence on the subjects’ presetting 
strategy (Supplementary Section G). In other words, subjects had to actively tune their joint stiffness to meet 
the required forces and displacements specified by the task in each of the four directions. Furthermore, the 
stiffness estimates for each force-displacement combination were indistinguishable across directions. Although 

Fig. 10.  Reflex-associated EMG following release. (A) FCR and ECU EMG across-stiffness conditions 
recorded from a single subject. The traces are aligned to their peak values following release. (B) Mean EMG 
values from (A) versus task stiffness. (C) CAI for the muscle pair versus task stiffness. (D) Reflex-evoked CAI 
regressed against stiffness, force, and displacement for all subjects. Although the reflex-evoked CAI increased 
with increasing stiffness, this relation was weaker than during the pre-release hold phase.
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the intrinsic stiffness at the hand is known to be highly direction-dependent13, subjects were able to pre-set their 
stiffness independently of movement direction.

Subjects tended to generate the minimum stiffness (below the nominal value) required to accomplish the 
task – the minimum target force over the maximum target displacement – and this trend persisted even when 
subjects failed. A smaller end-effector stiffness required a smaller joint stiffness, hence less muscle co-activation, 
and that would have reduced metabolic energy expenditure. This suggests that subjects tried to minimize the 
required muscle activity while meeting the task requirements and is consistent with the observation that in some 
circumstances (especially tasks requiring pushing), human neuro-muscular performance is not limited by force 
exertion but by stiffness production61.

Pre-movement predictive tuning of stiffness
Pre-release EMG activity was well related to the estimated task stiffness across most subjects and directions. 
Specifically, the co-activation index (CAI) showed a good linear correlation with the estimated task stiffness 
whenever the muscles were found to be active (Fig. 9C,D and Supplementary Fig. 13). Release elicited a stretch 
reflex in the muscles of the arm and hand, which was evident in our EMG data. Although co-contraction also 
increased with stiffness during the reflex, the relation was weaker than the co-contraction-stiffness relation 
during the initial hold period (Fig.  10). The latency of the spinal-mediated response is ~ 40 ms and for the 
supraspinal contribution ~ 75 ms12,62 which is consistent with our results. Berret et al.63, using a feed-forward 
model, showed that predictive co-contraction could be an optimal strategy for countering perturbation during 
reaching. In blocks of trials with different perturbation probabilities, they injected a torque pulse to the arm late 
in the reach. They found that subjects co-contracted their muscles in expectation of the perturbation, concluding 
that they used a feedforward strategy to overcome uncertainty. Our task could be viewed in a similar way where 
the sudden release of the handle is a random perturbation. Instead of simply countering the perturbation, our 
subjects co-activated their muscles pro-actively to optimize the entire movement. Our findings show that the 
feedforward strategy is employed more robustly as subjects learn the constraints of the task. Although beyond 
the scope of this study, reflexes associated with the rapid displacement of the arm may also be modulated 
predictively21 and act to restore stiffness disrupted by sudden changes in muscle length22–27. However, since 
we observed stiffness-dependent co-activation before the release, a similar pattern of co-activation during the 
reflex, and because the impedance model was accurate through the entire task, these reflex contributions do not 
alter our main finding that subjects can accurately preset their stiffness to predict the mechanics of an upcoming 
movement.

Conclusion
This work demonstrates that humans precisely and predictively tune their arm stiffness to accomplish a 
particularly challenging ballistic-release task. Our results show that subjects employed this strategy using the 
minimum possible stiffness and that the same strategy was used in different movement directions.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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